Offshore pipelines are increasingly being employed to transport offshore hydrocarbons to onshore processing facilities. Pipelines laid directly on the seabed are subject to a considerable hydrodynamic loading from waves and currents and must be accurately designed for on-bottom stability. Confidence in the stability of pipelines requires appropriate models for their assessment and, in this paper, particular emphasis is placed on achieving an integrated and balanced approach in considering the nonlinearities and uncertainties in the pipe structure, the reaction of the restraining soil, and the hydrodynamic loading applied. A statistical approach is followed by developing a response surface model for the pipeline maximum horizontal displacement within a storm, while including variability in parameters. The Monte Carlo simulation method is used in combination with the developed response surface model to calculate the extreme response statistics. The benefit of this approach is demonstrated and also used to investigate the sensitivity of the on-bottom pipeline simulation for a variety of model input parameters. These results provide guidance to engineers as to what uncertainties are worth reducing, if possible, before a pipe is designed.

References

1.
DNV
,
1988
, “
On-Bottom Stability Design of Submarine Pipelines, Recommended Practice
,” Det Norske Veritas (DNV), Report No. DNV-RP-E305.
2.
DNV
,
2007
, “
On-Bottom Stability Design of Submarine Pipelines, Recommended Practice
,” Det Norske Veritas (DNV), Report No. DNV-RP-F109.
3.
Dassault Systèmes
,
2010
, “ABAQUS Analysis User's Manual.”
4.
Tian
,
Y.
, and
Cassidy
,
M. J.
,
2008
, “
Modeling of Pipe-Soil Interaction and Its Application in Numerical Simulation
,”
Int. J. Geomech.
,
8
(
4
), pp.
213
229
.10.1061/(ASCE)1532-3641(2008)8:4(213)
5.
Tian
,
Y.
, and
Cassidy
,
M. J.
,
2010
, “
The Challenge of Numerically Implementing Numerous Force-Resultant Models in the Stability Analysis of Long On-Bottom Pipelines
,”
Comput. Geotech.
,
37
, pp.
216
312
.10.1016/j.compgeo.2009.09.004
6.
Tian
,
Y.
, and
Cassidy
,
M. J.
,
2011
, “
A Pipe-Soil Interaction Model Incorporating Large Lateral Displacements in Calcareous Sand
,”
J. Geotech. Geoenviron. Eng.
,
137
(
3
), pp.
279
287
.10.1061/(ASCE)GT.1943-5606.0000428
7.
Youssef
,
B. S.
,
Cassidy
,
M. J.
, and
Tian
,
Y.
,
2009
, “
Implementing 3D Hydrodynamic Forces Into Integrated Pipeline Analysis–UWAHYDRO
,” Centre for Offshore Foundation System, University of Western Australia, Perth, WA, Australia, Research Report No. C2521.
8.
Youssef
,
B. S.
,
Cassidy
,
M. J.
, and
Tian
,
Y.
,
2009
, “
Numerical Modelling of Hydrodynamic Forces
,” Centre for Offshore Foundation System, University of Western Australia, Perth, WA, Australia, Research Report No. C2520.
9.
Youssef
,
B. S.
,
Cassidy
,
M. J.
, and
Tian
,
Y.
,
2010
, “
Balanced Three-Dimensional Modelling of the Fluid-Structure-Soil Interaction of an Untrenched Pipeline
,”
International Offshore (Ocean) and Polar Engineering Conference
, Beijing.
10.
Youssef
,
B. S.
,
2012
, “
The Integrated Stability Analysis of Offshore Pipelines
,” Ph.D. thesis, University of Western Australia, Perth, Australia (submitted).
11.
Cathie
,
D. N.
,
Jaeck
,
C.
,
Ballard
,
J. C.
, and
Wintgens
,
J. F.
,
2005
, “
Pipeline Geotechnics—State-of-the-Art
,”
International Symposium on the Frontiers in Offshore Geotechnics (ISFOG 2005)
,
Perth, WA, Australia, Taylor and Francis,
pp.
95
114
.
12.
White
,
D. J.
, and
Randolph
,
M. F.
,
2007
, “
Seabed Characterisation and Models for Pipeline-Soil Interaction
,”
Int. J. Offshore Polar Eng.
,
17
(
3
), pp.
193
204
. Available at http://www.onepetro.org/mslib/servlet/onepetropreview?id=ISOPE-07-17-3-193
13.
Zhang
,
J.
,
2001
, “
Geotechnical Stability of Offshore Pipelines in Calcareous Sand
,” Ph.D. thesis, University of Western Australia, Perth, WA, Australia.
14.
Zhang
,
J.
,
Stewart
,
D. P.
, and
Randolph
,
M. F.
,
2002
, “
Kinematic Hardening Model for Pipeline-Soil Interaction Under Various Loading Conditions
,”
Int. J. Geomech.
,
2
(
4
), pp.
419
446
.10.1061/(ASCE)1532-3641(2002)2:4(419)
15.
Zhang
,
J.
,
Stewart
,
D. P.
, and
Randolph
,
M. F.
,
2002
, “
Modelling of Shallowly Embedded Offshore Pipelines in Calcareous Sand
,”
J. Geotech. Geoenviron. Eng.
,
128
(
5
), pp.
363
371
.10.1061/(ASCE)1090-0241(2002)128:5(363)
16.
Tian
,
Y.
,
Cassidy
,
M. J.
, and
Gaudin
,
C.
,
2010
, “
Advancing Pipe-Soil Interaction Models in Calcareous Sand
,”
Appl. Ocean Res.
,
32
(
3
), pp.
284
297
.10.1016/j.apor.2010.06.002
17.
Tian
,
Y.
, and
Cassidy
,
M. J.
,
2009
, “
UWAPIPE User Manual
,” Centre for Offshore Foundation System, University of Western Australia, Perth, WA, Australia, Research Report No. GEO:09484-b.
18.
Tian
,
Y.
, and
Cassidy
,
M. J.
,
2009
, “
UWAPIPE Verification Example Manual
,” Centre for Offshore Foundation System, University of Western Australia, Perth, WA, Australia, Research Report No. GEO:09484-a.
19.
Sorenson
,
T.
,
Bryndum
,
M.
, and
Jacobsen
,
V.
,
1986
, “
Hydrodynamic Forces on Pipelines—Model Tests
,” Danish Hydraulic Institute (DHI), Pipeline Research Council International (PRCI), Report No. PR-170-185.
20.
Gao
,
F. P.
,
Gu
,
X. Y.
, and
Jeng
,
D. S.
,
2003
, “
Physical Modeling of Untrenched Submarine Pipeline Instability
,”
Ocean Eng.
,
30
, pp.
1283
1304
.10.1016/S0029-8018(02)00108-7
21.
Gao
,
F. P.
,
Yan
,
S. M.
,
Yang
,
B.
, and
Luo
,
C. C.
,
2011
, “
Steady Flow-Induced Instability of a Partially Embedded Pipeline: Pipe–Soil Interaction Mechanism
,”
Ocean Eng.
,
38
, pp.
934
942
.10.1016/j.oceaneng.2010.09.006
22.
Borgman
,
L. E.
,
1969
, “
Directional Spectra Models for Design Use
,”
Offshore Technology Conference
(
OTC
), Houston, TX. 10.4043/1069-MS
23.
Lambrakos
,
K. F.
,
1982
, “
Marine Pipeline Dynamic Response to Waves From Directional Wave Spectra
,”
Ocean Eng.
,
9
(
4
), pp.
385
405
.10.1016/0029-8018(82)90031-2
24.
AGA
,
1988
, “
Submarine Pipeline On-Bottom Stability
,” Report No. PR-178-516, Brown & Root, American Gas Association, Houston, TX.
25.
AGA
,
1988
, “
Submarine Pipeline On-Bottom Stability
,” Report No. PR-178-717, Brown & Root, American Gas Association, Houston, TX.
26.
Jacobsen
,
V.
,
Bryndum
,
M. B.
, and
Bonde
,
C.
,
1989
, “
Fluid Loads on Pipelines: Sheltered or Sliding
,” Offshore Technology Conference (
OTC
), Houston, TX. 10.4043/6056-MS
27.
Verley
,
R. L. P.
, and
Reed
,
K.
,
1989
, “
Use of Laboratory Force Data in Pipeline Response Simulations
,” International Offshore Mechanics and Arctic Engineering Symposium, New York, pp.
157
165
.
28.
Myers
,
R. H.
, and
Montgomery
,
D. C.
,
1995
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley and Sons
,
New York
.
29.
Box
,
G. E. P.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
13
(
1
), pp.
1
45
, Available at http://www.jstor.org/stable/2983966
30.
Igland
,
R. T.
, and
Moan
,
T.
,
2000
, “
Reliability Analysis of Pipelines During Laying, Considering Ultimate Strength Under Combined Loads
,”
ASME J. Offshore Mech. Arct. Eng.
,
122
(
1
), pp.
40
46
.10.1115/1.533722
31.
Brown
,
G.
,
Tkaczyk
,
T.
, and
Howard
,
B.
,
2004
, “
Reliability Based Assessment of Minimum Reelable Wall Thickness for Reeling
,” International Pipeline Conference (
IPC2004
), Calgary, Alberta, Canada, pp.
1951
1960
.10.1115/IPC2004-0733
32.
Westgate
,
Z. J.
,
Randolph
,
M. F.
,
White
,
D. J.
, and
Li
,
S.
,
2010
, “
The Influence of Sea State on As-Laid Pipeline Embedment: A Case Study
,”
Appl. Ocean Res.
,
32
(
3
), pp.
321
331
.10.1016/j.apor.2009.12.004
33.
McConochie
,
J. D.
,
Stroud
,
S. A.
, and
Mason
,
L. B.
,
2010
, “
SS:Metocean ‘Extreme Hurricane Design Criteria for LNG Developments: Experience Using a Long Synthetic Database’
,”
Offshore Technology Conference
(
OTC
),
Houston, TX
.10.4043/20732-MS
34.
Allen
,
D. M.
,
1974
, “
The Relationship Between Variable Selection and Data Augmentation and a Method for Prediction
,”
Technometrics
,
16
(
1
), pp.
125
127
.10.1080/00401706.1974.10489157
35.
Karunakaran
,
D.
,
1993
, “
Nonlinear Dynamic Response and Reliability Analysis of Drag-Dominated Offshore Structures
,” Ph.D. thesis, Norwegian Institute of Technology, Trondheim.
36.
Cassidy
,
M. J.
,
1999
, “
Non-Linear Analysis of Jack-Up Structures Subjected to Random Waves
,” Ph.D. thesis, New College, Oxford.
You do not currently have access to this content.