Abstract
The first and second-order radiation conditions for scattering waves in two and three-dimensional problems have been derived by virtue of a sequence of linear differential operators. The wave forces on a large circular cylinder are computed by using finite element methods with first and second-order radiation conditions and the Sommerfeld condition, respectively. The results show that an improvement in accuracy is achieved by employing the second-order radiation condition. The interior region in which finite elements are employed can be restricted to a much smaller one, compared with that using the Sommerfeld condition and the computing efforts and required storage in the computer are reduced.