Abstract

One of the most critical components of super critical water reactor (SCWR) plant is pipe bend, carrying massive volume of supercritical water. Because of its intense fluctuation of velocity and pressure, it can exhibit unusual flow pattern in pipe bends conveying fluid. This unusual flow pattern may destroy the integrity of the piping network. Alternatively, because of unique chemical and physical properties, transportation of SCW can adversely effect on the integrity of the pipe bends, indicating probable failure of piping network. Therefore, intensive studies of SCW flow in bends are a must as a part of designing an efficient plant piping network. This article presents CFD analysis, carried out to examine the effect of variable pipe bend angle (90 deg, 120 deg, and 135 deg) on turbulent flow of SCW. The analysis indicates that the portion of the straight inlet pipe with fully developed flow shows no variation of results in all bend configurations. The study also reveals that secondary currents strengthen at lower bend angles and culminate the formation of vertices at the outlet of the right-angled elbow. It is found from the study that a greater part of the cross-sectional area is covered by the vortices at the bend midplanes compared to the bend outlets, where mixing of stream wise flow occurs as well. It is revealed that the radial positions of each vortex center are closer to the circumference of the pipe, and appear to be insensitive to bend angle. The study is ended with the comparison between supercritical water and normal water at standard conditions.

References

1.
Schulenberg
,
T.
, and
Leung
,
L.
,
2016
, “
Chapter 8: Super-Critical Water-Cooled Reactors
,”
Handbook of Generation IV Nuclear Reactors
,
Elsevier
, Karlsruhe Institute of Technology, Karlsruhe, Germany, pp.
189
220
.
2.
Murray
,
R. L.
, and
Holbert
,
K. E.
,
2020
, “
Chapter 18: Nuclear Power Plants
,”
Nuclear Energy
,
Elsevier
, Canadian Nuclear Laboratories, Chalk River, ON, Canada, pp.
325
348
.
3.
Gu
,
H.
,
Cheng
,
L.
,
Huang
,
S.
,
Bo
,
B.
,
Zhou
,
Y.
, and
Xu
,
Z.
,
2015
, “
Thermophysical Properties Estimation and Performance Analysis of Superheated-Steam Injection in Horizontal Wells Considering Phase Change
,”
Energy Convers. Manag.
,
99
, pp.
119
131
.10.1016/j.enconman.2015.04.029
4.
Wu
,
P.
,
Ren
,
Y.
,
Feng
,
M.
,
Shan
,
J.
,
Huang
,
Y.
, and
Yang
,
W.
,
2022
, “
A Review of Existing Super Critical Water Reactor Concepts, Safety Analysis Codes and Safety Characteristics
,”
Prog. Nucl. Energy
,
153
, p.
104409
.10.1016/j.pnucene.2022.104409
5.
Al-Rafai
,
W. N.
,
Tridimas
,
Y. D.
, and
Woolley
,
N. H.
,
1990
, “
A Study of Turbulent Flows in Pipe Bends
,”
Proc. Inst. Mech. Eng. Part C Mech. Eng. Sci.
,
204
(
6
), pp.
399
408
.10.1243/PIME_PROC_1990_204_120_02
6.
Sudo
,
K.
,
Sumida
,
M.
, and
Hibara
,
H.
,
1998
, “
Experimental Investigation on Turbulent Flow in a Circular-Sectioned 90-Degree Bend
,”
Exp. Fluids
,
25
(
1
), pp.
42
49
.10.1007/s003480050206
7.
Weske
,
J. R.
,
1947
, “
Experimental Investigation of Velocity Distributions of Downstream of Single Duct Bends
,”
National Advisory Committee for Aeronautics
,
Washington, DC
, No. NACA-TN-1471.
8.
Dutta
,
P.
, and
Nandi
,
N.
,
2019
, “
Numerical Study on Turbulent Separation Reattachment Flow in Pipe Bends With Different Small Curvature Ratio
,”
J. Inst. Eng. India Ser. C
,
100
(
6
), pp.
995
1004
.10.1007/s40032-018-0488-9
9.
Kim
,
J.
,
Yadav
,
M.
, and
Kim
,
S.
,
2014
, “
Characteristics of Secondary Flow Induced by 90-Degree Elbow in Turbulent Pipe Flow
,”
Eng. Appl. Comput. Fluid Mech.
,
8
(
2
), pp.
229
239
.10.1080/19942060.2014.11015509
10.
Roldán
,
M. I.
,
Valenzuela
,
L.
, and
Zarza
,
E.
,
2013
, “
Thermal Analysis of Solar Receiver Pipes With Superheated Steam
,”
Appl. Energy
,
103
, pp.
73
84
.10.1016/j.apenergy.2012.10.021
11.
Sun
,
F.
,
Yao
,
Y.
, and
Li
,
X.
,
2018
, “
Numerical Simulation of Superheated Steam Flow in Dual-Tubing Wells
,”
J. Pet. Explor. Prod. Technol.
,
8
(
3
), pp.
925
937
.10.1007/s13202-017-0390-7
12.
Kolarevic
,
M.
,
Savic
,
L.
,
Kapor
,
R.
, and
Mladenovic
,
N.
,
2014
, “
Supercritical Flow in Circular Pipe Bends
,”
FME Trans.
,
42
(
2
), pp.
128
132
.10.5937/fmet1402128K
13.
Kiss
,
A.
, and
Aszódi
,
A.
,
2008
, “
Summary for Three Different Validation Cases of Coolant Flow in Supercritical Water Test Sections With the Code ANSYS CFX 11.0
,” Proceedings of ICAPP 08, International Congress on Advances in Nuclear Power Plants (
ICAPP 2008
),
Anaheim, CA
, June 8–12, Paper No. 8336, pp.
1
10
.https://www.researchgate.net/publication/301228754_Summary_for_Three_Different_Validation_Cases_of_Coolant_Flow_in_Supercritical_Water_Test_Sections_with_the_Code_ANSYS_CFX_110
14.
Hummel
,
D. W.
, and
Novog
,
D. R.
,
2016
, “
Coupled 3D Neutron Kinetics and Thermal-Hydraulic Characteristics of the Canadian Supercritical Water Reactor
,”
Nucl. Eng. Des.
,
298
, pp.
78
89
.10.1016/j.nucengdes.2015.12.008
15.
Pietrzak
,
M.
,
2014
, “
Flow Patterns and Gas Fractions of Air–Oil and Air–Water Flow in Pipe Bends
,”
Chem. Eng. Res. Des.
,
92
(
9
), pp.
1647
1658
.10.1016/j.cherd.2013.12.008
16.
ANSYS, Inc., 2017, ANSYS FLUENT Theory Guide, Release 17.1, Canonsburg, PA.
17.
Abd Halim
,
M. A.
,
Nik Mohd
,
N. A. R.
,
Mohd Nasir
,
M. N.
, and
Dahalan
,
M. N.
,
2018
, “
The Evaluation of k-ε and k-ω Turbulence Models in Modelling Flows and Performance of S-Shaped Diffuser
,”
Int. J. Automot. Mech. Eng.
,
15
(
2
), pp.
5161
5177
.10.15282/ijame.15.2.2018.2.0399
18.
Shaheed
,
R.
,
Mohammadian
,
A.
, and
Kheirkhah Gildeh
,
H.
,
2019
, “
A Comparison of Standard k–ε and Realizable k–ε Turbulence Models in Curved and Confluent Channels
,”
Environ. Fluid Mech.
,
19
(
2
), pp.
543
568
.10.1007/s10652-018-9637-1
19.
Dinh, T. N., Yang, Y. Z., Tu, J. P., Nourgaliev, R. R., and Theofanous, T. G.,
2004
, “
Rayleigh-Bénard Natural Convection Heat Transfer: Pattern Formation, Complexity and Predictability
,”
Proceedings of ICAPP ’04
,
Pittsburgh, PA
, June 13–17, Paper No. 4241, pp.
1
11
.https://www.researchgate.net/publication/240611026_Rayleigh-Benard_Natural_Convection_Heat_Transfer_Pattern_Formation_Complexity_and_Predictability
20.
Tracy, C. R., Welch, W. R., Pinshow, B., Kearney M. R., and Porter, W. P., 2024, Properties of Air: A Manual for Use in Biophysical Ecology, 5th Edition, GitHub, San Francisco, CA.
21.
Moghrabi
,
A.
, and
Novog
,
D. R.
,
2018
, “
Determination of the Optimal Few-Energy Group Structure for the Canadian Super Critical Water-Cooled Reactor
,”
Ann. Nucl. Energy
,
115
, pp.
27
38
.10.1016/j.anucene.2018.01.011
You do not currently have access to this content.