Abstract

Inorganic scintillators are used in extreme environments and are essential in applications such as nuclear fission and fusion, radiation therapy, marine, and space exploration, etc. Radiation resistance is required for inorganic scintillators to be used in above mentioned applications. It is important to calculate the gamma buildup factors for inorganic scintillators to understand their radiation resistance behavior. The gamma-ray and neutron interaction parameters were calculated for inorganic scintillators such as BaF2, BGO, CdWO4, CaF2(Eu), CaWO4, CsI, CsI(Na), CsI(Tl), Gd2O2S, LaBr3(Ce), LaCl3(Ce), PbWO4, LSO(Ce), LYSO(Ce), NaI(Tl), YAG(Ce), ZnS(Ag), ZnWO4. The gamma-ray interaction parameters such as mass attenuation coefficient, half value layer, tenth value layer, effective atomic number, equivalent atomic number, exposure buildup factor (EBF), and energy absorption buildup factor (EABF) were computed using Phy-X/PSD software. The neutron interaction parameters such as fast neutron removal cross section, and mass attenuation factor for thermal and fast neutron were computed using Phy-X/PSD and NGCal software, respectively. The present calculated mass attenuation coefficient values are compared with GEANT4 code data available in the literature. The higher values of Zeff were found for PbWO4 up to 0.1 MeV and above 0.1 MeV, CsI(Tl) has higher Zeff values. However, the Zeq values were found to be higher for PbWO4 in the whole energy range. The mass attenuation factor for thermal and fast neutrons with the highest value was found for Gd2O2S and with the lowest value for BGO. The present investigation indicates that the inorganic scintillator PbWO4 has an excellent gamma-ray sensing response.

References

1.
McGregor
,
D. S.
,
2018
, “
Materials for Gamma Ray Spectrometers: Inorganic Scintilltors
,”
Annu. Rev. Mater. Res.
,
48
, pp.
245
277
.https://doi.org/10.1146/annurev-matsci-070616-124247
2.
Jagtap
,
S.
,
Chopade
,
P.
,
Tadepalli
,
S.
,
Bhalerao
,
A.
, and
Gosavi
,
S.
,
2019
, “
A Review on the Progress of ZnSe as Inorganic Scintillator
,”
Opto-Electron. Rev.
,
27
(
1
), pp.
90
103
.10.1016/j.opelre.2019.01.001
3.
Kim
,
C.
,
Lee
,
W.
,
Melis
,
A.
,
Elmughrabi
,
A.
,
Lee
,
K.
,
Park
,
C.
, and
Yeom
,
J.
,
2021
, “
A Review of Inorganic Scintillators Crystals for Extreme Environment
,”
Crystals
,
11
(
6
), p.
669
.10.3390/cryst11060669
4.
Singh
,
V. P.
,
Badiger
,
N. M.
,
Chanthima
,
N.
, and
Kaewkhao
,
J.
,
2014
, “
Evaluation of Gamma-Ray Exposure Buildup Factors and Neutron Shielding for Bismuth Borosilicate Glasses
,”
Radiat. Phys. Chem.
,
98
, pp.
14
21
.10.1016/j.radphyschem.2013.12.029
5.
Singh
,
V. P.
,
Badiger
,
N. M.
,
Kothan
,
S.
,
Kaewjaeng
,
S.
,
Korkut
,
T.
,
Kim
,
H. J.
, and
Kaewkhao
,
J.
,
2016
, “
Gamma-Ray and Neutron Shielding Efficiency of Pb-Free Gadolinium-Based Glasses
,”
Nucl. Sci. Techol.
,
27
, p.
103
.https://doi.org/10.1007/s41365-016-0099-1
6.
Alzahrani
,
J. S.
,
Alothman
,
M. A.
,
Eke
,
C.
,
Al-Ghamdi
,
H.
,
Aloraini
,
D. A.
, and
Al-Buriahi
,
M. S.
,
2021
, “
Simulating the Radiation Shielding Properties of TeO2–Na2O–TiO Glass System Using PHITS Monte Carlo Code
,”
Comput. Mater. Sci.
,
196
, p.
110566
.10.1016/j.commatsci.2021.110566
7.
Singh
,
V. P.
, and
Badiger
,
N. M.
,
2014
, “
Comprehensive Study on Energy Absorption Buildup Factors and Exposure Buildup Factors for Photon Energy 0.015 to 15 MeV Up to 40 Mfp Penetration Depth for Gel Dosimeters
,”
Radiat. Phys. Chem.
,
103
, pp.
234
242
.10.1016/j.radphyschem.2014.05.033
8.
Hosamani
,
M. M.
,
Vinayak
,
A.
,
Hiremath
,
G. B.
,
Patil
,
P. N.
, and
Badiger
,
N. M.
,
2022
, “
Determination of Neutron Moderation Parameters Through Neutron Captured Gamma Ray Emission- a Novel Method
,”
Ann. Nucl. Energy
,
171
, p.
109045
.10.1016/j.anucene.2022.109045
9.
El-Agawany
,
F. I.
,
Ekinci
,
N.
,
Mahmoud
,
K. A.
,
Sarıta
,
S.
,
Aygün
,
B.
,
Ahmed
,
E. M.
, and
Rammah
,
Y. S.
,
2021
, “
Gamma-Ray Shielding Capacity of Different B4C-, Re-, and Ni-Based Superalloys
,”
Eur. Phys. J. Plus
,
136
(
5
), pp.
1
17
.10.1140/epjp/s13360-021-01498-6
10.
Nagaraja
,
N.
,
Manjunath
,
H. C.
,
Seenappa
,
L.
,
Sridhar
,
K. N.
, and
Ramalingam
,
H. B.
,
2020
, “
Radiation Shielding Properties of Silicon Polymers
,”
Radiat. Phys. Chem.
,
171
, p.
108723
.10.1016/j.radphyschem.2020.108723
11.
Ravangvong
,
S.
,
Sriwongsa
,
K.
,
Glumglomchit
,
P.
,
Janthimangkul
,
R.
,
Pansuay
,
M.
,
Puangfuang
,
S.
,
Suksee
,
N.
, and
Khobkham
,
C.
,
2021
, “
The Comparison Behaviors of Some Scintillators for Radiation Shielding
,”
SNRU J. Sci. Tech
,
14
(
1
), pp.
1
6
.10.55674/snrujst.v14i1.244414
12.
Medhat
,
M. E.
, and
Wang
,
Y.
,
2013
, “
Geant4 Code for Simulation Attenuation of Gamma Rays Through Scintillation Detectors
,”
Ann. Nucl. Energy
,
62
, pp.
316
320
.10.1016/j.anucene.2013.06.034
13.
Borisut
,
P.
,
Chaiphaksa
,
W.
,
Limkitjaroenporn
,
P.
,
Insiripong
,
S.
,
Kaewkhao
,
J.
,
Sangwaranatee
,
N.
, and
Sangwaranatee
,
N. W.
,
2022
, “
Proton, Alpha, and Gamma Rays Interactions of CsI(Na) Scintillator Using the Theoretically Computational Program
,”
Integr. Ferroelectr.
,
224
(
1
), pp.
163
171
.10.1080/10584587.2022.2035606
14.
Singh
,
V. P.
, and
Badiger
,
N. M.
,
2016
, “
Photon Interaction With Semiconductor and Scintillation Detectors
,”
Nucl. Sci. Tech
,
27
(
3
), pp.
1
12
.10.1007/s41365-016-0076-8
15.
Issa
,
S. A. M.
,
Sayyed
,
M. I.
,
Zaid
,
M. H. M.
, and
Matori
,
K. A.
,
2017
, “
A Comprehensive Study on Gamma Rays and Fast Neutron Sensing Properties of GAGOC and CMO Scintillators for Shielding Radiation Applications
,”
J. Spectrosc.
,
2017
, pp.
1
9
.10.1155/2017/9792816
16.
Chaiphaksa
,
W.
,
Limkitjaroenporn
,
P.
,
Kim
,
H. J.
, and
Kaewkhao
,
J.
,
2016
, “
The Mass Attenuation Coefficients, Effective Atomic Numbers and Effective Electron Densities for GAGG:Ce and CaMoO4 Scintillators
,”
Prog. Nucl. Energy
,
92
, pp.
48
53
.10.1016/j.pnucene.2016.06.010
17.
Şakar
,
E.
,
Özpolat
,
Ö. F.
,
Alım
,
B.
,
Sayyed
,
M. I.
, and
Kurudirek
,
M.
,
2020
, “
Phy-X/PSD: Development of a User Friendly Online Software for Calculation of Parameters Relevant to Radiation Shielding and Dosimetry
,”
Radiat. Phys. Chem.
,
166
, p.
108496
.10.1016/j.radphyschem.2019.108496
18.
Zahran
,
H. Y.
,
Yousef
,
S.
, and
Yahia
,
I. S.
,
2020
, “
Novel Approach of Gamma Attenuation Performance of Cu2SnZn(S,Se,Te)4 Semiconductor Materials: Radiation Interactions With Proton, Alpha, Carbon, Electron, and Photon
,”
Mater. Sci. Semicond. Process.
,
123
, p.
105554
.10.1016/j.mssp.2020.105554
19.
Sabry
,
N.
,
Zahran
,
H. Y.
,
Yousef
,
S.
,
Algarni
,
H.
,
Umar
,
A.
,
Albargi
,
H. B.
, and
Yahia
,
I. S.
,
2021
, “
Gamma-Ray Attenuation, Fast Neutron Removal Cross-Section and Build Up Factor of Cu2MnGe[S, Se, Te]4 Semiconductor Compounds: Novel Approach
,”
Radiat. Phys. Chem.
,
179
, p.
109248
.10.1016/j.radphyschem.2020.109248
20.
Kassab
,
L. R. P.
,
da Silva Mattos
,
G. R.
,
Issa
,
S. A. M.
,
Bilal
,
G.
,
Bordon
,
C. D. S.
,
Kilic
,
G.
,
Zakaly
,
H. M. H.
, and
Tekin
,
H. O.
,
2021
, “
Optical and Physical Behaviours of Newly Developed Germanium-Tellurium (GeTe) Glasses: A Comprehensive Experimental and in-Silico Study With Commercial Glasses and Ordinary Shields
,”
J. Mater. Sci Mater Electron
,
32
, pp.
22953
22973
.10.1007/s10854-021-06780-y
21.
Kaur
,
P.
,
Singh
,
K. J.
,
Thakur
,
S.
,
Kurudirek
,
M.
, and
Rafiei
,
M. M.
,
2021
, “
Structural Investigations and Nuclear Radiation Shielding Ability of Bismuth Lithium Antimony Borate Glasses
,”
J. Phys. Chem. Solids
,
150
, p.
109812
.10.1016/j.jpcs.2020.109812
22.
Al-Hadeethi
,
Y.
, and
Sayyed
,
M. I.
,
2020
, “
Evaluation of Gamma Ray Shielding Characteristics of CaF2–BaO –P2O5 Glass System Using Phy-X/PSD Computer Program
,”
Prog. Nucl. Energy
,
126
, p.
103397
.10.1016/j.pnucene.2020.103397
23.
Al-Hadeethi
,
Y.
,
Sayyed
,
M. I.
, and
Agar
,
O.
,
2020
, “
Ionizing Photons Attenuation Characterization of Quaternary Tellurite–Zinc–Niobium–Gadolinium Glasses Using Phy-X/PSD Software
,”
J. Non-Cryst. Solids
,
538
, p.
120044
.10.1016/j.jnoncrysol.2020.120044
24.
Al-Hadeethi
,
Y.
, and
Sayyed
,
M. I.
,
2020
, “
Using Phy-X/PSD to Investigate Gamma Photons in SeO2–Ag2O–TeO2 Glass Systems for Shielding Applications
,”
Ceram. Int.
,
46
(
8
), pp.
12416
12421
.10.1016/j.ceramint.2020.02.003
25.
Kumar
,
A.
,
Jain
,
A.
,
Sayyed
,
M. I.
,
Laariedh
,
F.
,
Mahmoud
,
K. A.
,
Nebhen
,
J.
,
Khandaker
,
M. U.
, and
Faruque
,
M. R. I.
,
2021
, “
Tailoring Bismuth Borate Glasses by Incorporating PbO/GeO2 for Protection Against Nuclear Radiation
,”
Sci. Rep.
,
11
, p.
7784
.10.1038/s41598-021-87256-1
26.
Celen
,
Y. Y.
,
Akkurt
,
I.
, and
Kayıran
,
H. F.
,
2021
, “
Gamma Ray Shielding Parameters of Barium Tetra Titanate (BaTi4O9) Ceramic
,”
J. Mater. Sci. Mater Electron
,
32
, pp.
18351
18362
.10.1007/s10854-021-06376-6
27.
Slimani
,
Y.
,
Hamad
,
M. K.
,
Olarinoye
,
I. O.
,
Alajerami
,
Y. S.
,
Sayyed
,
M. I.
,
Almessiere
,
M. A.
, and
Mhareb
,
M. H. A.
,
2021
, “
Determination of Structural Features of Different Perovskite Ceramics and Investigation of Ionizing Radiation Shielding Properties
,”
J. Mater. Sci. Mater. Electron
,
32
, pp.
20867
20881
.10.1007/s10854-021-06603-0
28.
Alzahrani
,
J. S.
,
Alrowaili
,
Z. A.
,
Olarinoye
,
I. O.
,
Alothman
,
M. A.
,
Al-Baradi
,
A. M.
,
Kebaili
,
I.
, and
Al-Buriahi
,
M. S.
,
2021
, “
Nuclear Shielding Properties and Buildup Factors of Cr-Based Ferroalloys
,”
Prog. Nucl. Energy
,
141
, p.
103956
.10.1016/j.pnucene.2021.103956
29.
Kamal
,
I.
,
Karim
,
M. K. A.
,
Harun
,
H. H.
,
Razak
,
H. R. A.
,
Jian
,
L. Y.
,
Chyi
,
J. L. Y.
, and
Kechik
,
M. M. A.
,
2021
, “
Evaluation of Radiation Attenuation Properties on a Various Composition of Polydimethylsiloxane (PDMS) for Fabrication of Kidney Phantom
,”
Radiat. Phys. Chem.
,
189
, p.
109661
.10.1016/j.radphyschem.2021.109661
30.
Gokce
,
H. S.
,
Gunger
,
O.
, and
Yilmaz
,
H.
,
2021
, “
An Online Software to Simulate the Shielding Properties of Materials for Neutrons and Photons:NGCal
,”
Radiat. Phys. Chem.
,
185
, p.
109519
.10.1016/j.radphyschem.2021.109519
31.
Hosamani
,
M. M.
,
Vinayak
,
A.
,
Mangeshkar
,
S.
,
Malode
,
S.
,
Bhajantri
,
S.
,
Hegde
,
V.
,
Hiremath
,
G. B.
, and
Badiger
,
N. M.
,
2020
, “
Determination of Effective Atomic Number of Multifunctional Materials Using Backscattered Beta Particles- A Novel Method
,”
Spectrosc. Lett.
,
53
(
2
), pp.
132
139
.10.1080/00387010.2019.1707228
32.
Harima
,
Y.
,
1983
, “
An Approximation of Gamma-Ray Buildup Factors by Modified Geometrical Progression
,”
Nucl. Sci. Eng.
,
83
(
2
), pp.
299
309
.10.13182/NSE83-A18222
33.
Harima
,
Y.
,
Sakamoto
,
Y.
,
Tanaka
,
S.
, and
Kawai
,
M.
,
1986
, “
Validity of the Geometric-Progression Formula in Approximating Gamma Ray Buildup Factors
,”
Nucl. Sci. Eng.
,
94
(
1
), pp.
24
35
.10.13182/NSE86-A17113
34.
Singh
,
V. P.
,
Medhat
,
M. E.
,
Badiger
,
N. M.
, and
Rahman
,
A. Z. M. S.
,
2015
, “
Radiation Shielding Effectiveness of Newly Developed Superconductors
,”
Radiat. Phys. Chem.
,
106
, pp.
175
183
.10.1016/j.radphyschem.2014.07.013
35.
Hiremath
,
G. B.
,
Hosamani
,
M. M.
,
Vinayak
,
A.
,
Patil
,
P. N.
,
Singh
,
V. P.
,
Ayachit
,
N. H.
, and
Badiger
,
N. M.
,
2022
, “
Investigation of Gamma Ray, Electron, and Neutron Interaction Parameters of Some Topological Insulating Materials
,”
Radiat. Eff. Defects Solids
, epub, pp.
1
17
.10.1080/10420150.2022.2133714
36.
Singh
,
V. P.
, and
Badiger
,
N. M.
,
2014
, “
Gamma Ray and Neutron Shielding Properties of Some Alloy Materials
,”
Ann. Nucl. Energy
,
64
, pp.
301
310
.10.1016/j.anucene.2013.10.003
37.
Kaplan
,
M. F.
,
1989
,
Concrete Radiation Shielding: Nuclear Physics, Concrete Properties, Design and Construction
,
Longman Scientific & Technical
, New York, p. 457.
38.
Chilton
,
A. B.
,
Faw
,
R. E.
, and
Shultis
,
J. K.
,
1984
,
Principles of Radiation Shielding
,
Prentice Hall
,
Englewood Cliffs
, p. 488.
39.
Sears
,
V. F.
,
1992
, “
Neutron Scattering Lengths and Cross Sections
,”
Neutron News
,
3
(
3
), pp.
26
37
.10.1080/10448639208218770
40.
Brown
,
D. A.
,
Chadwick
,
M. B.
,
Capote
,
R.
,
Kahler
,
A. C.
,
Trkov
,
A.
,
Herman
,
M. W.
,
Sonzogni
,
A. A.
,
Danon
,
Y.
, et al.,
2018
, “
ENDF/B-VII.0:The 8th Major Release of the Nuclear Reaction Data Library With CIELO-Project Cross Sections, New Standards and Thermal Scattering Data
,”
Nucl. Data Sheets
,
148
, pp.
1
142
.10.1016/j.nds.2018.02.001
41.
Berger
,
M. J.
,
Hubbell
,
J. H.
,
Seltzer
,
S. M.
,
Chang
,
J.
,
Coursey
,
J. S.
,
Sukumar
,
R.
, and
Zucker
,
D. S.
,
1987
, “
XCOM:Photon Cross-Sections on a Personal Computer Program
,”
Xcom Nbsir
,
87
, p.
3597
.10.1016/10.2172/6016002
You do not currently have access to this content.