Abstract

Ionizing radiation generates unpaired electrons or free radical centers in alanine. The electron paramagnetic resonance (EPR) detects, identifies, and quantifies these free radicals, proportional to the absorbed dose. The accurate measurements of low doses using EPR dosimetry with alanine are highly challenging due to (1) the weak EPR dosimetric signal from low dose alanine and measurement errors, (2) the sample anisotropy in crystalline alanine, and (3) the background signals from sample impurities. This study explores the feasibility of using the dose spiking EPR technique to overcome these challenges and decreases the detection limit up to 20 milligray (mGy) in a low dose measurement using EPR. The measurement errors from the sample anisotropy were reduced by rotating the samples relative to the constant magnetic field direction using a goniometer and averaging the resulting EPR spectra. This technique decreased the measurement errors at high doses; however, it was insufficient to decrease the detection limit and increase the measurement accuracy at low doses (<0.5 Gy). As a result, the high measurement accuracy at the high doses (>4 Gy) was exploited to increase the accuracy at the low doses using the dose spiking EPR technique. To this end, the low-dose alanine sample, undetectable and not reliably measurable in the X-band continuous wave (CW) EPR spectrometer, spikes with a high dose (4 Gy). Then, the total dose was measured and subtracted from a spike dose to get the initial low dose. This technique detected and measured the low doses with reliable accuracy (±10%). As a result, we concluded that this method has great potential to solve the low dose measurement problems in alanine dosimetry.

References

1.
Brustolon, M., and Giamello, E., eds.,
2009
,
Electron Paramagnetic Resonance, a Practitioner's Toolkit
,
Wiley
,
Hoboken, NJ
.
2.
Lund
,
A.
,
Shiotani
,
M.
, and
Shimada
,
S.
,
2011
,
Principles and Applications of ESR Spectroscopy
,
Springer Science & Business Media, Berlin, p. 461.
3.
Regulla
,
D. F.
, and
Deffner
,
U.
,
1982
, “
Dosimetry by ESR Spectroscopy of Alanine
,”
Appl. Radiat. Isotopes
,
33
(
11
), pp.
1101
1114
.10.1016/0020-708X(82)90238-1
4.
Anton
,
M.
,
2006
, “
Uncertainty in Alanine/ESR Dosimetry at the Physikalisch-Technische Bundesanstalt
,”
Phys. Med. Biol.
,
51
(
21
), pp.
5419
5440
.10.1088/0031-9155/51/21/003
5.
Heydari
,
M. Z.
,
Malinen
,
E.
,
Hole
,
E. O.
, and
Sagstuen
,
E.
,
2002
, “
Alanine Radicals. 2. The Composite Polycrystalline Alanine EPR Spectrum Studied by ENDOR, Thermal Annealing, and Spectrum Simulation
,”
J. Phys. Chem. A
,
106
(
38
), pp.
8971
8977
.10.1021/jp026023c
6.
Sagstuen
,
E.
,
Hole
,
E. O.
,
Haugedal
,
S. R.
, and
Nelson
,
W. H.
,
1997
, “
Alanine Radicals: Structure Determination by EPR and ENDOR of Single Crystals X-Irradiated at 295 K
,”
J. Phys. Chem. A
,
101
(
50
), pp.
9763
9772
.10.1021/jp972158k
7.
Sagstuen
,
E.
,
Sanderud
,
A.
, and
Hole
,
E. O.
,
2004
, “
The Solid-State Radiation Chemistry of Simple Amino Acids, Revisited
,”
Radiat. Res.
,
162
(
2
), pp.
112
119
.10.1667/RR3215
8.
Anton
,
M.
,
2005
, “
Development of a Secondary Standard for the Absorbed Dose to Water Based on the Alanine EPR Dosimetry System
,”
Appl. Radiat. Isotopes
,
62
(
5
), pp.
779
795
.10.1016/j.apradiso.2004.10.009
9.
Gancheva
,
V.
,
Yordanov
,
N. D.
,
Callens
,
F.
,
Vanhaelewyn
,
G.
,
Raffi
,
J.
,
Bortolin
,
E.
,
Onori
,
S.
,
Malinen
,
E.
,
Sagstuen
,
E.
,
Fabisiak
,
S.
, and
Peimel-Stuglik
,
Z.
,
2008
, “
An International Intercomparison on ‘Self-Calibrated’ Alanine EPR Dosimeters
,”
Radiat. Phys. Chem.
,
77
(
3
), pp.
357
364
.10.1016/j.radphyschem.2007.06.004
10.
Stuglik
,
Z.
,
2007
, “
Alanine-EPR Dosimetry System. Why We Like It
?,”
IAEA Training Course
, Warsaw, Poland, Dec. 3–7.https://www.osti.gov/etdeweb/servlets/purl/21047760
11.
Yordanov
,
N. D.
,
Gancheva
,
V.
, and
Karakirova
,
Y.
,
2013
, “
Some Recent Developments of EPR Dosimetry
,”
EPR of Free Radicals in Solids II: Trends in Methods and Applications
,
A.
Lund
, and
M.
Shiotani
, eds.,
Springer Science + Business Media
,
Dordrecht, The Netherlands
, pp.
311
344
.
12.
IAEA
,
2000
, “
Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water
,” IAEA TECDOC Series, Vienna, Austria, Report No. IAEA-TECDOC-398.
13.
ICRU
,
1976
, “
Determination of Absorbed Dose in a Patient Irradiated by Beams of X-ray or Gamma Rays in Radiotherapy Procedures
,” Bethesda, MD, ICRU Report No. 24.
14.
Chen
,
F.
,
Nicolucci
,
P.
, and
Baffa
,
O.
,
2008
, “
Enhanced Sensitivity of Alanine Dosimeters to Low Energy X-Rays: Preliminary Results
,”
Radiat. Meas.
,
43
(
2–6
), pp.
467
470
.10.1016/j.radmeas.2007.11.066
15.
Guidelli
,
E. J.
, and
Baffa
,
O.
,
2014
, “
Influence of Proton Beam Energy on the Dose Enhancement Factor Caused by Gold Nanoparticles: An Experimental Approach
,”
Med. Phys.
,
41
(
3
), p.
032101
.10.1118/1.4865809
16.
Marrale
,
M.
,
Longo
,
A.
,
Spano
,
M.
,
Bartolotta
,
A.
,
D'Oca
,
M. C.
, and
Brai
,
M.
,
2011
, “
Sensitivity of Alanine Dosimeters With Gadolinium Exposed to 6 MV Photons at Clinical Doses
,”
Radiat. Res.
,
176
(
6
), pp.
821
826
.10.1667/RR2256.1
17.
Hayes
,
R. B.
,
Haskell
,
E. H.
,
Wieser
,
A.
,
Romanyukha
,
A. R.
,
Hardy
,
B. L.
, and
Barrus
,
J. K.
,
2000
, “
Assessment of an Alanine EPR Dosimetry Technique With Enhanced Precision and Accuracy
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
,
440
(
2
), pp.
453
461
.10.1016/S0168-9002(99)00957-2
18.
Goodman
,
B. A.
,
Worasith
,
N.
,
Ninlaphruk
,
S.
,
Mungpayaban
,
H.
, and
Deng
,
W.
,
2017
, “
Radiation Dosimetry Using Alanine and Electron Paramagnetic (EPR) Spectroscopy: A New Look at an Old Topic
,”
Appl. Magn. Reson.
,
48
(
2
), pp.
155
173
.10.1007/s00723-016-0855-8
19.
Geso
,
M.
,
Ackerly
,
T.
,
Lim
,
S. A.
,
Best
,
S. P.
,
Gagliardi
,
F.
, and
Smith
,
C.
,
2018
, “
Application of the ‘Spiking’ Method to the Measurement of Low Dose Radiation (≤ 1Gy) Using Alanine Dosimeters
,”
Appl. Radiat. Isotopes
,
133
, pp.
111
116
.10.1016/j.apradiso.2018.01.003
20.
Bradshaw
,
W. W.
,
Cadena
,
D. G.
,
Crawford
,
G. W.
, and
Spetzler
,
H. A. W.
,
1962
, “
The Use of Alanine as a Solid Dosimeter
,”
Radiat. Res.
,
17
(
1
), pp.
11
21
.10.2307/3571206
21.
ISO
,
1996
, “
X and Gamma Reference Radiation for Calibrating Dosemeters and Doserate Meters and for Determining Their Response as a Function of Photon Energy—Part 1: Radiation Characteristics and Production Methods
,”
ISO
,
Geneva
, Standard No. ISO 4037–1.
22.
ISO
,
1997
, “
X and Gamma Reference Radiation for Calibrating Dosemeters and Doserate Meters and for Determining Their Response as a Function of Photon Energy—Part 2: Dosimetry for Radiation Protection Over the Energy Ranges 8 keV to 1.3 MeV and 4 MeV to 9 MeV
,” ISO, Geneva, Standard No. ISO
4037
–2.
23.
ISO,
1999
, “
X and Gamma Reference Radiation for Calibrating Dosemeters and Doserate Meters and for Determining Their Response as a Function of Photon Energy—Part 3: Calibration of Area and Personal Dosemeters and the Measurement of Their Response as a Function of Energy and Angle of Incidence
,”
ISO
,
Geneva
, Standard No. ISO
4037
–3.
24.
Behrens
,
R.
,
Kowatari
,
M.
, and
Hupe
,
O.
,
2009
, “
Secondary Charged Particle Equilibrium in 137Cs and 60Co Reference Radiation Fields
,”
Radiat. Prot. Dosim.
,
136
(
3
), pp.
168
175
.10.1093/rpd/ncp173
25.
Harvey
,
D.
,
2000
,
Modern Analytical Chemistry
, 1st edn.,
Mc Graw Hill
,
New York
, p.
816
.
26.
Heumann
,
K. G.
,
Gallus
,
S. M.
,
Rädlinger
,
G.
, and
Vogl
,
J.
,
1998
, “
Accurate Determination of Element Species by on-Line Coupling of Chromatographic Systems With ICP-MS Using Isotope Dilution Technique
,”
Spectrochim. Acta, Part B
,
53
(
2
), pp.
273
287
.10.1016/S0584-8547(97)00134-1
27.
Meisel
,
T.
,
Moser
,
J.
,
Fellner
,
N.
,
Wegscheider
,
W.
, and
Schoenberg
,
R.
,
2001
, “
Simplified Method for the Determination of Ru, Pd, Re, Os, Ir and Pt in Chromitites and Other Geological Materials by Isotope Dilution ICP-MS and Acid Digestion
,”
Analyst
,
126
(
3
), pp.
322
328
.10.1039/b007575m
28.
Weyer
,
S.
,
Münker
,
C.
,
Rehkämper
,
M.
, and
Mezger
,
K.
,
2002
, “
Determination of Ultra-Low Nb, Ta, Zr and Hf Concentrations and the Chondritic Zr/Hf and Nb/Ta Ratios by Isotope Dilution Analyses With Multiple Collector ICP-MS
,”
Chem. Geol.
,
187
(
3–4
), pp.
295
313
.10.1016/S0009-2541(02)00129-8
29.
Eaton
,
G. R.
,
Eaton
,
S. S.
,
Barr
,
D. P.
, and
Weber
,
R. T.
,
2010
,
Quantitative EPR
,
Springer
,
New York
, p.
192
.
30.
Jiao
,
L.
,
Liu
,
Z. C.
,
Ding
,
Y. Q.
,
Ruan
,
S. Z.
,
Wu
,
Q.
,
Fan
,
S. J.
, and
Zhang
,
W. Y.
,
2014
, “
Comparison Study of Tooth Enamel ESR Spectra of Cows, Goats and Humans
,”
J. Radiat. Res.
,
55
(
6
), pp.
1101
1106
.10.1093/jrr/rru066
31.
Weil
,
J. A.
, and
Bolton
,
J. R.
,
2007
,
Electron Paramagnetic Resonance: Elementary Theory and Practical Applications
,
Wiley
,
Hoboken, NJ
, p.
664
.
32.
Aoba
,
T.
,
Doi
,
Y.
,
Yagi
,
T.
,
Okazaki
,
M.
,
Takahashi
,
J.
, and
Moriwaki
,
Y.
,
1982
, “
Electron Spin Resonance Study of Sound and Carious Enamel
,”
Calcif. Tissue Int.
,
34
, pp. S
88
–S
92
.
33.
Haskell
,
E. H.
,
Hayes
,
R. B.
, and
Kenner
,
G. H.
,
1997
, “
Improved Accuracy of EPR Dosimetry Using a Constant Rotation Goniometer
,”
Radiat. Meas.
,
27
(
2
), pp.
325
329
.10.1016/S1350-4487(96)00107-2
34.
Iwasaki
,
M.
,
Miyazawa
,
C.
,
Uesawa
,
T.
, and
Niwa
,
K.
,
1993
, “
Effect of Sample Grain Size on the CO33- Signal Intensity in ESR Dosimetry of Human Tooth Enamel
,”
Radioisotopes
,
42
(
8
), pp.
470
473
.10.3769/radioisotopes.42.470
35.
Ivannikov
,
A. I.
,
Skvortsov
,
V. G.
,
Stepanenko
,
V. F.
,
Tikunov
,
D. D.
,
Takada
,
J.
, and
Hoshi
,
M.
,
2001
, “
EPR Tooth Enamel Dosimetry: Optimization of the Automated Spectra Deconvolution Routine
,”
Health Phys.
,
81
(
2
), pp.
124
137
.10.1097/00004032-200108000-00006
You do not currently have access to this content.