Abstract

This work analyzes the rewetting of a pressurized water reactor (PWR) fuel slab using improved lumped parameter formulations based on Hermite approximations for integrals. The time-dependent two-dimensional rewetting problem is transformed into a quasi-steady heat conduction problem in a reference system moving with the rewetting front by assuming a constant rewetting velocity. The lumped parameter formulations are applied in the slab thickness direction, reducing the two-dimensional problem into a one-dimensional heat conduction equation in the longitudinal direction. The rewetting velocity is obtained by combining the analytical solutions of the average temperature distributions in the reflooded wet region and the liquid deficient dry region at the rewetting front. The Peclet number is obtained as a function of the Biot numbers, dimensionless internal heat generation rate, and dimensionless initial temperatures. The obtained solutions compare favorably with available solutions in the literature.

References

1.
Sahu
,
S. K.
,
Das
,
P. K.
, and
Bhattacharyya
,
S.
,
2009
, “
A Three-Region Conduction-Controlled Rewetting Analysis by the Heat Balance Integral Method
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2100
2107
.10.1016/j.ijthermalsci.2009.03.013
2.
Yeh
,
H.-C.
,
1975
, “
An Analysis of Rewetting of a Nuclear Fuel Rod in Water Reactor Emergency Core Cooling
,”
Nucl. Eng. Des.
,
34
(
3
), pp.
317
322
.10.1016/0029-5493(75)90052-7
3.
Yeh
,
H.-C.
,
1975
, “
Method of Solving the Potential Field in Complicated Geometries and the Potential Flow in the Lower Plenum of a Pressurized Water Reactor
,”
Nucl. Eng. Des.
,
32
(
1
), pp.
85
104
.10.1016/0029-5493(75)90091-6
4.
Yeh
,
H.-C.
,
1980
, “
An Analytical Solution to Fuel-and-Cladding Model of the Rewetting of a Nuclear Fuel Rod
,”
Nucl. Eng. Des.
,
61
(
1
), pp.
101
112
.10.1016/0029-5493(80)90081-3
5.
Olek
,
S.
,
1989
, “
Solution to a Fuel-and-Cladding Rewetting Model
,”
Int. Comm. Heat Mass Transfer
,
16
(
1
), pp.
143
158
.10.1016/0735-1933(89)90050-X
6.
Sahu
,
S. K.
,
Das
,
P. K.
, and
Bhattacharyya
,
S.
,
2008
, “
Rewetting Analysis of Hot Surfaces With Internal Heat Source by the Heat Balance Integral Method
,”
Heat Mass Transfer
,
44
(
10
), pp.
1247
1256
.10.1007/s00231-007-0360-6
7.
Pereira
,
G. D.
,
2017
, “
Rewetting Analysis of a PWR Fuel Rod Using the Improved Lumped Model
,” Master dissertation, COPPE, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro/RJ, Brazil.
8.
Pereira
,
G. D.
, and
Su
,
J.
,
2019
, “
Rewetting Analysis of a PWR Fuel Rod Using an Improved Lumped Model
,”
Proceedings of International Nuclear Atlantic Conference—INAC 2019
, ABEN, Santos/SP, Brazil, Oct. 21–25, R02-067.
9.
Yamanouchi
,
A.
,
1968
, “
Effect of Core Spray Cooling in Transient State After Loss of Coolant Accident
,”
J. Nucl. Sci. Technol.
,
5
(
11
), pp.
547
558
.10.1080/18811248.1968.9732513
10.
Duffey
,
R. B.
, and
Porthouse
,
D. T. C.
,
1973
, “
The Physics of Rewetting in Water Reactor Emergency Core Cooling
,”
Nucl. Eng. Des.
,
25
(
3
), pp.
379
394
.10.1016/0029-5493(73)90033-2
11.
Piggott
,
B. D. G.
, and
Porthouse
,
D. T. C.
,
1975
, “
A Correlation of Rewetting Data
,”
Nucl. Eng. Des.
,
32
(
2
), pp.
171
181
.10.1016/0029-5493(75)90128-4
12.
Mennig
,
J.
, and
Özişik
,
M. N.
,
1985
, “
Coupled Integral Equation Approach for Solving Melting or Solidification
,”
Int. J. Heat Mass Transfer
,
28
(
8
), pp.
1481
1485
.10.1016/0017-9310(85)90250-9
13.
Cotta
,
R. M.
,
Özişik
,
M. N.
, and
Mennig
,
J.
,
1990
, “
Coupled Integral Equation Approach for Solving Phase-Change Problems in a Finite Slab
,”
J. Franklin Inst.
,
327
(
2
), pp.
225
234
.10.1016/0016-0032(90)90018-E
14.
Cotta
,
R. M.
, and
Mikhailov
,
M.
,
1997
,
Heat Conduction—Lumped Analysis, Integral Transforms, Symbolic
,
Wiley
,
Chichester, UK
.
15.
Su
,
J.
, and
Cotta
,
R. M.
,
2001
, “
Improved Lumped Parameter Formulation for Simplified LWR Thermohydraulic Analysis
,”
Ann. Nucl. Energy
,
28
(
10
), pp.
1019
1031
.10.1016/S0306-4549(00)00104-3
16.
Su
,
J.
,
2001
, “
Improved Lumped Models for Asymmetric Cooling of a Long Slab by Heat Convection
,”
Heat Mass Transfer
,
28
(
7
), pp.
973
983
.10.1016/S0735-1933(01)00301-3
17.
Su
,
G.
,
Tan
,
Z.
, and
Su
,
J.
,
2009
, “
Improved Lumped Models for Transient Heat Conduction in a Slab With Temperature-Dependent Thermal Conductivity
,”
Appl. Math. Modell.
,
33
(
1
), pp.
274
283
.10.1016/j.apm.2007.11.007
18.
Satapathy
,
A. K.
, and
Kar
,
P. K.
,
2000
, “
Rewetting of an Infinite Slab With Boundary Heat Flux
,”
Numer. Heat Transfer, Part A: Appl.
,
37
(
1
), pp.
87
99
.10.1080/104077800274433
19.
Satapathy
,
A. K.
, and
Sahoo
,
R. K.
,
2002
, “
Rewetting of an Infinite Slab With Uniform Heating Under Quasi-Steady Conditions
,”
ASME J. Heat Transfer
,
124
(
5
), pp.
875
880
.10.1115/1.1484111
20.
Todreas
,
N. E.
, and
Kazimi
,
M. S.
,
1990
,
Nuclear Systems I: Thermal Hydraulic Fundamentals
, Vol.
1
,
Taylor & Francis
, New York.
21.
Olek
,
S.
,
1989
, “
Rewetting of a Solid Cylinder With Precursory Cooling
,”
Appl. Sci. Res.
,
46
(
4
), pp.
347
364
.10.1007/BF01998551
22.
Satapathy
,
A. K.
, and
Sahoo
,
R. K.
,
2002
, “
Rewetting of an Infinite Tube With a Uniform Heating
,”
Heat Mass Transfer/Waerme- Und Stoffuebertragung
,
38
(
7–8
), pp.
589
595
.10.1007/s00231-001-0280-9
You do not currently have access to this content.