Abstract

The open pool Australian light-water (OPAL) reactor cold neutron source (CNS) is a 20 L liquid deuterium thermosiphon system which has performed consistently but will require replacement in the future. The CNS deuterium exploits neutronic heating to passively drive the thermosiphon loop and is cryogenically cooled by forced convective helium flow via a heat exchanger. In this study, a detailed computational fluid dynamics (CFD) model of the complete thermosiphon system was developed for simulation. Unlike previous studies, the simulation employed a novel polyhedral mesh technique. Results demonstrated that the polyhedral technique reduced simulation computational requirements and convergence time by an order of magnitude while predicting thermosiphon performance to within 1% accuracy when compared with prototype experiments. The simulation model was extrapolated to OPAL operating conditions and confirmed the versatility of the CFD model as an engineering design and preventative maintenance tool. Finally, simulations were performed on a proposed second-generation CNS design that increases the CNS moderator deuterium volume by 5 L, and results confirmed that the geometry maintains the thermosiphon deuterium in the liquid state and satisfies the CNS design criteria.

References

1.
Thiering
,
J. R.
,
Lu
,
W.
, and
Ullah
,
R.
,
2006
, “
Commissioning of the OPAL Reactor Cold Neutron Source
,”
Proceedings of the Pacific Basin Nuclear Conference
,
Australian Nuclear Association
, Sydney, Australia, Oct.
15
20
.https://inis.iaea.org/search/search.aspx?orig_q=RN:39080151
2.
Lopez-Rubio
,
A.
, and
Gilbert
,
E. P.
,
2009
, “
Neutron Scattering: A Natural Tool for Food Science and Technology Research
,”
Trends Food Sci. Technol.
,
20
(
11–12
), pp.
576
586
.10.1016/j.tifs.2009.07.008
3.
Kennedy
,
S. J.
,
2006
, “
Construction of the Neutron Beam Facility at Australia's OPAL Research Reactor
,”
Phys. B: Condens. Matter
,
385–386
, pp.
949
954
.10.1016/j.physb.2006.05.280
4.
Ageron
,
P.
,
De Beaucourt
,
P.
,
Harig
,
H. D.
,
Lacaze
,
A.
, and
Livolant
,
M.
,
1969
, “
Experimental and Theoretical Study of Cold Neutron Sources of Liquid Hydrogen and Liquid Deuterium
,”
Cryogenics
,
9
(
1
), pp.
42
50
.10.1016/0011-2275(69)90257-4
5.
Egelstaff
,
P.
,
1990
, “
Historical Benchmarks and Experimental Problems
,”
Proceedings of the International Workshop on Cold Neutron Sources
, Los Alamos, NM, Mar. 5–8, pp.
179
192
.https://www.osti.gov/servlets/purl/5496338#page=197
6.
Gaubatz
,
W.
, and
Gobrecht
,
K.
,
2000
, “
The FRM-II Cold Neutron Source
,”
Phys. B: Condens. Matter
,
276–278
, pp.
104
105
.10.1016/S0921-4526(99)01260-0
7.
Ageron
,
P.
,
1989
, “
Cold Neutron Sources at ILL
,”
Nucl. Instrum. Methods Phys. Res. Sect. A
,
284
(
1
), pp.
197
199
.10.1016/0168-9002(89)90281-7
8.
Ozden
,
E.
, and
Tari
,
I.
,
2010
, “
Shell Side CFD Analysis of a Small Shell-and-Tube Heat Exchanger
,”
Energy Convers. Manage.
,
51
(
5
), pp.
1004
1014
.10.1016/j.enconman.2009.12.003
9.
Wang
,
Q.
,
Chen
,
Q.
,
Chen
,
G.
, and
Zeng
,
M.
,
2009
, “
Numerical Investigation on Combined Multiple Shell-Pass Shell-and-Tube Heat Exchanger With Continuous Helical Baffles
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1214
1222
.10.1016/j.ijheatmasstransfer.2008.09.009
10.
Buscaglia
,
G. C.
,
Dari
,
E. A.
,
Martin
,
J. E.
,
Arnica
,
D. L.
, and
Bonetto
,
F. B.
,
2004
, “
Finite Element Modeling of Liquid Deuterium Flow and Heat Transfer in a Cold-Neutron Source
,”
Int. J. Comput. Fluid Dyn.
,
18
(
5
), pp.
355
365
.10.1080/10618560310001615420
11.
Pavlou
,
W.
,
Ho
,
M.
,
Yeoh
,
G. H.
, and
Lu
,
W.
,
2016
, “
Thermal-Hydraulic Modelling of the Cold Neutron Source Thermosiphon System
,”
Ann. Nucl. Energy
,
90
, pp.
135
147
.10.1016/j.anucene.2015.11.034
12.
Ho
,
M.
,
Jeong
,
Y.
,
Park
,
H.
,
Yeoh
,
G. H.
, and
Lu
,
W.
,
2016
, “
Using CFD as Preventative Maintenance Tool for the Cold Neutron Thermosiphon System
,”
Sci. Technol. Nucl. Install.
,
2016
, pp.
1
11
.10.1155/2016/5452085
13.
Sosnowski
,
M.
,
Krzywanski
,
J.
,
Grabowska
,
K.
, and
Gnatowska
,
R.
,
2017
, “
Polyhedral Meshing in Numerical Analysis of Conjugate Heat Transfer
,”
Exp. Fluid Mech.
,
180
, pp.
1
6
.10.1051/epjconf/201818002096
14.
Sosnowski
,
M.
,
Krzywanski
,
J.
, and
Gnatowska
,
R.
,
2017
, “
Polyhedral Meshing as an Innovative Approach to Computational Domain Discretization of a Cyclone in a Fluidized Bed CLC Unit
,”
Energy Fuels
,
14
, p.
01027
.10.1051/e3sconf/20171401027
15.
Lu
,
W.
, and
Thiering
,
J. R.
,
2012
, “
Using a Multi-Parameter Monitoring Methodology to Predict Failures in the Cryogenic Plant of the Cold Neutron Source at Australia's OPAL Reactor
,”
AIP Conf. Proc.
1434
, pp.
1537
1542
.10.1063/1.470783
16.
Lemmon
,
E. W.
,
McLinden
,
M. O.
, and
Friend
,
D. G.
,
2005
, “
Thermophysical Properties of Fluid Systems, NIST Chemistry Webbook
,” National Institute of Standards and Technology, Gaithersburg, MD, NIST Standard Reference Database No. 69.
17.
Richardson
,
I. A.
, and
Leachman
,
J.
,
2012
, “
Theromphysical Properties Status of Deuterium and Tritium
,”
AIP Conf. Proc.
,
1434
, pp.
1841
1848
.10.1063/1.4707121
18.
Marquadt
,
E. D.
,
Le
,
J. P.
, and
Radebaugh
,
R.
,
2002
, “
Cryogenic Material Properties Database
,”
Cryocoolers
,
11
, pp.
681
687
.10.1007/0-306-47112-4_84
19.
Misiorek
,
H.
,
Zakrzewski
,
T.
, and
Rafalowicz
,
J.
,
1981
, “
The Influence of Neutron Irradiation on the Thermal Conductivity of Aluminum in the Range of 5–50 K
,”
Int. J. Thermophys.
,
2
(
4
), pp.
341
353
.10.1007/BF00498765
20.
Menter
,
F. R.
,
1993
, “
Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows
,”
AIAA
Paper No. 93-2906.10.2514/6.1993-2906
You do not currently have access to this content.