Abstract

The heat transport system of Gen-IV supercritical water-cooled reactors (SCWRs) will operate at pressures close to 25 MPa and outlet temperatures of up to 625 °C. The design and safety analyses of this type of reactors still necessitate among others, experimental information and validation of critical (choked) flows models of water above the thermodynamic critical state. Up to now, choked flow data were collected at atmospheric discharge pressure conditions, without changing the discharge pressure to verify the occurrence of choking flow; in most of the cases, using fluids different from water. This paper presents experimental supercritical water choking flow data collected by using a convergent-divergent test section by changing the discharge pressure to verify the occurrence of choked flow. The critical mass flux is presented as a function of the temperature difference between a pseudo-critical temperature and the bulk fluid temperature. This representation allows us to assess similar experiments performed by using different test sections. Hence, a comparison of actual data with those previously obtained using 1.0 mm and 1.4 mm diameter sharp-edged orifices, shows peculiar differences. The actual experiments were limited by very low values of choking mass flow rates. Furthermore, in some cases, it was observed the presence of an increase in the discharge pressure that seems to indicate the existence of shock-wave structures. We are also able to estimate a pseudo-critical temperature difference below which choking flow systematically occurs.

References

1.
Pioro
,
I.
, and
Duffey
,
R. B.
,
2007
,
Heat Transfer and Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
,
ASME Press
,
Three Park Avenue, NY
, p.
300
.
2.
Lizon-A-Lugrin
,
L.
,
Teyssedou
,
A.
, and
Pioro
,
I.
,
2012
, “
Appropriate Thermodynamic Cycles to Be Used in Future Pressure-Channel Supercritical Water-Cooled Nuclear Power Plants
,”
Nucl. Eng. Des.
,
246
, pp.
2
11
.10.1016/j.nucengdes.2011.07.024
3.
Mignot
,
G.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2008
, “
Critical Flow Experiment and Analysis for Supercritical Fluid
,”
Nucl. Eng. Technol.
,
40
(
2
), pp.
133
138
.10.5516/NET.2008.40.2.133
4.
Mignot
,
G.
,
Anderson
,
M.
, and
Corradini
,
M.
,
2009
, “
Measurement of Supercritical CO2 Critical Flow: Effects of L/D and Surface Roughness
,”
Nucl. Eng. Des.
,
239
(
5
), pp.
949
955
.10.1016/j.nucengdes.2008.10.031
5.
Muftuoglu
,
A.
, and
Teyssedou
,
A.
,
2014
, “
Experimental Study of Abrupt Discharge of Water at Supercritical Conditions
,”
Exp. Therm. Fluid Sci.
,
55
, pp.
12
20
.10.1016/j.expthermflusci.2014.02.009
6.
Teyssedou
,
A.
,
Muftuoglu
,
A.
, and
Hidouche
,
A.
,
2015
, “
Experimental Study of Choking Water Flow Across Sharp Edged Orifices at Supercritical Pressures
,”
ISSCWR-7
, Helsinki, Finland, Mar. 15–18, Paper #2032.
7.
Olekhnovitch
,
A.
,
Teyssedou
,
A.
,
Tye
,
P.
, and
Champagne
,
P.
,
2001
, “
Critical Heat Flux Under Choking Flow Conditions: Part I—Outlet Pressure Fluctuations
,”
Nucl. Eng. Des.
,
205
(
1–2
), pp.
159
173
.10.1016/S0029-5493(00)00346-0
8.
Olekhnovitch
,
A.
,
Teyssedou
,
A.
, and
Tye
,
P.
,
2001
, “
Critical Heat Flux Under Choking Flow Conditions: Part II—Maximum Values of Flow Parameters Attained Under Choking Flow Conditions
,”
Nucl. Eng. Des.
,
205
(
1–2
), pp.
175
190
.10.1016/S0029-5493(00)00347-2
9.
Muftuoglu
,
A.
,
2014
, “
Experimental Study of Choking Flow of Water at Supercritical Conditions
,” Ph.D. thesis,
Polytechnique Montréal
, Montréal, QC, Canada, p.
236
.
10.
Ledinegg
,
M.
,
1938
, “
Instability of Flow During Natural and Forced Circulation
,”
Die Warme
,
61
(
8
), pp.
891
898
.
11.
Lee
,
D. H.
, and
Swinnerton
,
D.
,
1983
, “
Evaluation of Critical Flow for Supercritical Steam-Water
,” UKAEA, Atomic Energy Establishment, Winfrith, p.
154
, Report No. EPRI-NP-3086.
12.
Holmgren
,
M.
,
2006
, “
X-Steam for Matlab
,” Edition, accessed Jan. 20, 2006, www.x-eng.com
13.
Lemmon
,
E. W.
, Bell, I. H.,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
REFPROP Documentation, Release 10.0, Jun 04, 2018
,”.
14.
Schmidt
,
E.
,
1982
,
Properties of Water and Steam in SI—Units
, 3th ed.,
Springer-Verlag
,
Berlin
.
15.
Hidouche
,
A.
,
2015
, “
Étude Des Écoulements Critiques (Bloqués) Pour Des Fluides Aux États Sous et Sur Critiques
,” Ph.D. thesis,
Polytechnique Montréal
, Montréal, QC, Canada, p.
184
.
16.
Chen
,
Y.
,
Yang
,
C.
,
Zhang
,
S.
,
Zhao
,
M.
,
Du
,
K.
, and
Cheng
,
X.
,
2009
, “
Experimental Study of Critical Flow of Water at Supercritical Pressure
,”
Front. Energy Power Eng. China
,
3
(
2
), pp.
175
180
.10.1007/s11708-009-0029-6
17.
Chen
,
Y.
,
Zhao
,
M.
,
Yang
,
C.
,
Bi
,
K.
,
Du
,
K.
, and
Zhang
,
S.
,
2010
, “
Critical Flow of Water Under Supercritical Pressures
,”
ASME
Paper No. IHTC14-22156.10.1115/IHTC14-22156
18.
Chen
,
Y.
,
Zhao
,
M.
,
Yang
,
C.
,
Bi
,
K.
,
Du
,
K.
, and
Zhang
,
S.
,
2012
, “
Research on Critical Flow of Water Under Supercritical Pressures in Nozzles
,”
J. Energy Power Eng.
,
6
, pp.
201
208
.10.17265/1934-8975/2012.02.006
19.
Falat
,
A.
,
M.
,
Poirier
,
M.
,
Sorin
,
M.
,
A.
, and
Teyssedou
,
2019
, “
Experimental Study of the Performance on an Ejector System Using Freon 134a
,”
Exp. Therm. Fluid Sci.
,
105
, pp.
165
180
.10.1016/j.expthermflusci.2019.03.022
20.
Sakurai
,
K.
,
Ko
,
H. S.
,
Okamoto
,
K.
, and
Madarame
,
H.
,
2001
, “
Visualization Study for Pseudo Boiling in Supercritical Carbon Dioxide Under Forced Convection in Rectangular Channel
,” Proceedings of the First International Symposium on Supercritical Water-Cooled Reactor Design and Technology (SCR-2000), Tokyo, Japan, Nov. 6–8, Paper 303.
21.
Ota
,
J.
,
Sakurai
,
K.
,
Okamoto
,
K.
, and
Madarame
,
H.
,
2002
, “
Application of Image Analysis With Noise Removal for Supercritical CO2
,”
ASME
Paper No. ICONE10-22755.10.1115/ICONE10-22755
22.
Haase
,
R.
,
1969
,
Thermodynamics of Irreversible Process
, Chap. 2,
Addison-Wesley
,
UK
, p.
509
.
23.
Radovskiy
,
I. S.
,
1970
, “
Speed of Sound in Two-Phase Vapor–Liquid Systems
,”
J. Appl. Mech. Tech. Phys.
,
5
, pp.
778
784
.10.1007/BF00851905
24.
Radovskiy
,
I. S.
,
1971
, “
Calculation of the Velocity of Sound in a Vapor–Liquid Medium
,”
High Temp. (Teplofizika Vysokikh Temperatur)
,
9
(
2
), pp.
310
315
.
25.
Radovskiy
,
I. S.
,
1977
, “
Propagation Speeds for Perturbations in a Flow of a Two-Phase Mixture
,”
High Temp.
,
15
(
2
), pp.
300
302
.
26.
Frenkel
,
J. I.
,
1947
,
Kinetic Theory of Liquids
,
Clarendon Press
,
Oxford, UK
, p.
488
.
27.
Bolmatov
,
D.
,
Brazhkin
,
V.
, and
Trachenko
,
K.
,
2013
, “
Thermodynamic Behaviour of Supercritical Matter
,”
Nat. Commun.
,
4
(
1
), p.
2231
.10.1038/ncomms3331
28.
Banuti
,
D. T.
,
2015
, “
Crossing the Widom-Line—Supercritical Pseudo-Critical-Boiling
,”
J. Supercrit. Fluids
,
98
, pp.
12
16
.10.1016/j.supflu.2014.12.019
29.
Naceur
,
A.
, and
Teyssedou
,
A.
,
2020
, “
Introducing Thermal Effects in the Rotational Energy of Diatomic Molecules
,”
Results Phys.
, 18, p.
103285
.10.1016/j.rinp.2020.103285
30.
Liepmann
,
H. W.
, and
Roshko
,
A.
,
2016
,
Elements of Gasdynamics
,
Dover Publications
,
New York
, p.
443
.
31.
Landau
,
L. D.
, and
Lifshitz
,
E. M.
,
1987
,
Fluid Mechanics, Course of Theoretical Physics, Volume
, 2nd ed., Vol.
6
,
Butterworth Heinemann
,
UK
, p.
539
.
32.
John
,
J.
,
1972
, Gas Dynamics (Series in Mechanical Engineering), F. Kreith, ed.,
Allyn and Bacon
, Boston, MA, p.
394
.
33.
Zel'dovich
,
Y. B.
, and
Raizer
,
P.
,
1966
,
Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena
,
Dover Publications
,
New York
, p.
916
.
34.
Munday
,
D.
,
Gutmark
,
E.
,
Liu
,
J.
, and
Kailasanath
,
K.
,
2011
, “
Flow Structure and Acoustics of Supersonic Jets From Conical Convergent-Divergent Nozzles
,”
Phys. Fluids
,
23
(
11
), p.
116102
.10.1063/1.3657824
35.
Van Dyke
,
M.
,
2005
,
An Album of Fluid Motion, (Photo of Page 170)
,
The Parabolic Press
,
Stanford, CA
.
36.
Petersen
,
P.
,
2016
, “
Mach Diamonds; Winner Excellent Slow-Motion Award
,” Excellent Video Award, 31st International Congress on High-Speed Imaging and Photonics (ICHSIP), Osaka, Japan, Nov. 7–10.
37.
Rayleigh (Lord)
,
O. M.
,
1916
, “
On the Discharge of Gases Under High Pressures
,”
Philos. Mag., Ser.
,
32
(
188
), pp.
177
187
.10.1080/14786441608635555
38.
Pack
,
D. C.
,
1950
, “
A Note-on Prandtl's Formula for the Wave-Length of a Supersonic Gas Jet
,”
Q. J. Mech. Appl. Math.
,
3
(
2
), pp.
173
181
.10.1093/qjmam/3.2.173
39.
Gibbings
,
J. C.
,
Ingham
,
J.
, and
Johnson
,
D.
,
1968
,
Flow in a Supersonic Jet Expanding From a Convergent Nozzle, Ministry of Defense, Aeronautical Research Council Papers, Fluid Mechanics Division
,
University of Liverpool
,
UK
, p.
38
. Report No. C.P. No. 1197.
40.
Yang
,
Z.
,
Bi
,
Q.
,
Zhu
,
G.
,
Zhang
,
Q.
, and
Liang
,
J.
,
2014
, “
Leak Rates of High Pressure Steam–Water Across Simulation Crack
,”
Exp. Therm. Fluid Sci.
,
59
, pp.
118
126
.10.1016/j.expthermflusci.2014.07.009
You do not currently have access to this content.