Abstract
This paper summarizes the issue of the validation of the silicon-filtered neutron beam transport in the deep neutron transport penetration experiment in iron. Iron is an essential structural material important for nuclear technology. The use of a silicon-filtered beam is a very interesting method because some significant peaks occur in the spectrum, helping to study selected wide energy regions during the deep neutron transport in the iron. The detailed characterization of the silicon-filtered beam has been performed in the past as well. Therefore, the input spectrum for the penetration experiments is well-known. The character of the input spectrum is reflecting the fine structure of the silicon cross section in region 1–8 MeV. Based on the agreement between calculated and measured attenuation in groups located within the neutron flux peaks, one can reveal possible problems in neutron transport description. The results are confirming satisfactory agreement of neutron transport description in ENDF/B-VII.1 in the majority of energy regions, while in the interval 4.7–6 MeV, underprediction in attenuation can be observed. This seems to be a consequence of discrepancies in the angular distribution of scattered neutrons. These results constitute an advance to previously performed integral experiments characterizing the neutron transport in iron using 252Cf(s.f) and 235U(nth;fiss).