Abstract

Correct mathematical models of a reactor core in benchmarking of reactor physics experiments require detailed knowledge of exact isotopic composition of fuel pellets, especially the presence of neutron absorbers. Among them, knowledge of 234U and 236U abundance in fuel is important, because their absorption is considerably stronger than that of the most common 238U and their concentration is significantly higher than any other absorbers. Thus, the fuel pellets used in the nuclear research reactor LR-0 have been experimentally investigated using the procedure that involves a method of secondary ion mass spectrometry (SIMS), which allowed for analyses of miniature amount of the pellet material without disturbing its integrity. The pellets were swiped with cotton cloths and the microscopic particles collected on the cloth were analyzed. The isotopic composition of individual uranium particles then provided information required for the reactor core modeling and in addition to that some hints about used source materials, history of nuclear material, and the manufacturing process of the pellets.

References

1.
Darweesh
,
M.
, and
Shawky
,
S.
,
2019
, “
Study on the Performance of Different Uranium Isotopic Codes Used in Nuclear Safeguards Activities
,”
Heliyon
,
5
(
4
), p.
e01470
.10.1016/j.heliyon.2019.e01470
2.
Godoy
,
M. L. D. P.
,
Godoy
,
J. M.
,
Roldão
,
L. A.
, and
Tauhata
,
L.
,
2009
, “
Determination of Total Content and Isotopic Compositions of Plutonium and Uranium in Environmental Samples for Safeguards Purposes by ICP-QMS
,”
J. Environ. Radioactivity
,
100
(
8
), pp.
613
625
.10.1016/j.jenvrad.2009.04.012
3.
Harrison
,
J. J.
,
Payne
,
T. E.
,
Wilsher
,
K. L.
,
Thiruvoth
,
S.
,
Child
,
D. P.
,
Johansen
,
M. P.
, and
Hotchkis
,
M. A. C.
,
2016
, “
Measurement of 233U/234U Ratios in Contaminated Groundwater Using Alpha Spectrometry
,”
J. Environ. Radioactivity
,
151
(
Part 3
), pp.
537
541
.10.1016/j.jenvrad.2015.08.013
4.
Košťál
,
M.
,
Schulc
,
M.
,
Losa
,
E.
,
Novák
,
E.
,
Šimon
,
J.
,
Burianová
,
N.
,
Uhlíř
,
J.
,
Mareček
,
M.
,
Czakoj
,
T.
,
Rypar
,
V.
,
Juříček
,
V.
,
Trkov
,
A.
, and
Capote
,
R.
,
2020
, “
A Reference Neutron Field for Measurement of Spectrum Averaged Cross Sections
,”
Ann. Nucl. Energy
,
140
(
1
), p.
107119
.10.1016/j.anucene.2019.107119
5.
Košt'ál
,
M.
,
Schulc
,
M.
,
Šimon
,
J.
,
Burianová
,
N.
,
Harutyunyan
,
D.
,
Losa
,
E.
, and
Rypar
,
V.
,
2018
, “
Measurement of Various Monitors Reaction Rate in a Special Core at LR-0 Reactor
,”
Ann. Nucl. Energy
,
112
, pp.
759
768
.10.1016/j.anucene.2017.10.036
6.
Konoplev
,
K. A.
,
Sushkov
,
P. A.
,
Tchmshkyan
,
D. V.
,
Vasiliev
,
G. J.
, and
Zakharov
,
A. S.
,
1998
, “
Isotope c(234U)/c(235U) Relation in PIK Reactor Fuel Elements
,”
Nucl. Eng. Des.
,
182
(
3
), pp.
249
251
.10.1016/S0029-5493(97)00305-1
7.
Wood
,
H. G.
,
2008
, “
Effects of Separation Processes on Minor Uranium Isotopes in Enrichment Cascades
,”
Sci. Global Secur.
,
16
(
1–2
), pp.
26
36
.10.1080/08929880802361796
8.
Bianchi
,
D.
,
Cortese
,
P.
,
Dellacasa
,
G.
, and
Merlano
,
I.
,
2005
, “
Determination of the Isotopic Ratio 234U/238U in Liquid Scintillation and Environmental Applications
,”
Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrometers Detectors Assoc. Equip.
,
553
(
3
), pp.
543
549
.10.1016/j.nima.2005.07.020
9.
López
,
M. A.
,
Sierra
,
I.
,
Hernández
,
C.
,
García
,
S.
,
García
,
D.
, and
Pérez
,
A.
,
2020
, “
Internal Dosimetry of Uranium Workers Exposed During the Nuclear Fuel Fabrication Process in Spain, Radiation Physics and Chemistry
,”
Special Section on Proceedings of the 3rd International Conference on Dosimetry and Its Applications (ICDA-3)
, Vol.
171
, May 27–31, p.
108706
.
10.
Khattab
,
M. R.
,
2016
, “
Determination of Uranium Concentrations and 234U/238U Activity Ratio in Some Granitic Rock Samples by Alpha Spectrometry: Application of a Radiochemical Procedure
,”
Radiat. Prot. Environ.
,
39
(
3
), pp.
122
127
.10.4103/0972-0464.194961
11.
Halicz
,
L.
,
Segal
,
I.
,
Gavrieli
,
I.
,
Lorber
,
A.
, and
Karpas
,
Z.
,
2000
, “
Determination of the 234U/238U Ratio in Water Samples by Inductively Coupled Plasma Mass Spectrometry
,”
Anal. Chim. Acta
,
422
(
2
), pp.
203
208
.10.1016/S0003-2670(00)01071-0
12.
Quemet
,
A.
,
Ruas
,
A.
,
Dalier
,
V.
, and
Rivier
,
C.
,
2019
, “
Development and Comparison of High Accuracy Thermal Ionization Mass Spectrometry Methods for Uranium Isotope Ratios Determination in Nuclear Fuel
,”
Int. J. Mass Spectrom.
,
438
, pp.
166
174
.10.1016/j.ijms.2019.01.008
13.
Tamborini
,
G.
,
Betti
,
M.
,
Forcina
,
V.
,
Hiernaut
,
T.
,
Giovannone
,
B.
, and
Koch
,
L.
,
1998
, “
Application of Secondary Ion Mass Spectrometry to the Identification of Single Particles of Uranium and Their Isotopic Measurement
,”
Spectrochim. Acta Part B: At. Spectrosc.
,
53
(
9
), pp.
1289
1302
.10.1016/S0584-8547(98)00121-9
14.
Ranebo
,
Y.
,
Hedberg
,
P. M. L.
,
Whitehouse
,
M. J.
,
Ingeneri
,
K.
, and
Littmann
,
S.
,
2009
, “
Improved Isotopic SIMS Measurement of Uranium Particles for Nuclear Safeguard Purposes
,”
J. Anal. At. Spectrom.
,
24
(
3
), pp.
277
287
.10.1039/b810474c
15.
Košťál
,
M.
,
Rypar
,
V.
,
Milčák
,
J.
,
Juříček
,
V.
,
Losa
,
E.
,
Forget
,
B.
, and
Harper
,
S.
,
2016
, “
Study of Graphite Reactivity Worth on Well-Defined Cores Assembled on LR-0 Reactor
,”
Ann. Nucl. Energy
,
87
(
2
), pp.
601
611
.10.1016/j.anucene.2015.10.010
16.
Esaka
,
F.
,
Watanabe
,
K.
,
Fukuyama
,
H.
,
Onodera
,
T.
,
Esaka
,
K. T.
,
Magara
,
M.
,
Sakurai
,
S.
, and
Usuda
,
S.
,
2004
, “
Efficient Isotope Ratio Analysis of Uranium Particles in Swipe Samples by Total-Reflection X-Ray Fluorescence Spectrometry and Secondary Ion Mass Spectrometry
,”
J. Nucl. Sci. Technol.
,
41
(
11
), pp.
1027
1032
.10.1080/18811248.2004.9726327
17.
Peres
,
P.
,
Hedberg
,
P. M. L.
,
Walton
,
S.
,
Montgomery
,
N.
,
Cliff
,
J. B.
,
Rabemananjaraa
,
F.
, and
Schuhmacher
,
M.
,
2012
, “
Nuclear Safeguards Applications Using LG‐SIMS With Automated Screening Capabilities
,”
Surface and Interface Analysis, Special Issue: Proceedings of the Eighteenth International Conference on Secondary Ion Mass Spectrometry
, Vol.
45
, No.
1
, Riva del Garda, Trentino, Italy, Sept. 18–23, pp.
561
565
.https://onlinelibrary.wiley.com/doi/abs/10.1002/sia.5015
18.
Košťál
,
M.
,
Rypar
,
V.
,
Losa
,
E.
, and
Schulc
,
M.
,
2018
, “
VVER-1000 Physics Experiments Hexagonal Lattices (1.275 cm Pitch) of Low Enriched U(3.3 wt.% U235)O2 Fuel Assemblies in Light Water 75As(n, 2n), 23Na(n,2n), 90Zr(n,2n), 89Y(n,2n) Reaction Rates
,” Benchmark OECD, NEA, Report No. LR(0)-FUND-RESR-001 CRIT-RRATE.
You do not currently have access to this content.