Abstract

This paper presents the analysis of reactivity initiated transients in an idealized, light water research reactor as a part of International Atomic Energy Agency (IAEA) safety related benchmark. The simulation model is based on point reactor kinetics coupled with one-dimensional (1D), two-channel model for thermal hydraulics. The point kinetics equations (PKEs) have been solved using an implicit Runge–Kutta (RK) method and the coolant transport equations have been solved using implicit finite difference formulation. Accuracy of the implemented models and methods has been demonstrated. Important safety parameters like peak power, peak fuel, and coolant temperatures have been predicted for a series of transients. Intercode comparison shows that the predictions of the present simulations are in good agreement with other codes. This approach provides a time efficient solution for safety analysis of reactors with tightly coupled core where point kinetics can be applied. To address the sensitivity of predictions with respect to important input parameters, simulations have been carried out with different sets of inputs reported in the literature. They indicate that predictions for fast transients are spread over a wider range compared to slow transients. For a given transient, predictions of peak power have a wider spread, while peak temperatures are relatively less sensitive to neutronic inputs. Also, for fast transients, prompt neutron generation time and delayed neutron fraction have dominant influence on the evolution of power. For slow transients, the reactivity feedback effects are equally important.

References

1.
OECD-NEA
,
2012
,
Nuclear Fuel Safety Criteria Technical Review
, 2nd ed.,
OECD-NEA
,
Paris, France
.
2.
AERB/SG/NPP-PHWR/D-6
,
2003
,
Fuel Design for Pressurised Heavy Water Reactors
,
Atomic Energy Regulatory Board
,
Mumbai, India
.
3.
IAEA-TECDOC
,
1992
,
Research Reactor Core Conversion Guidebook, Volume 3: Appendices G and H
,
IAEA
,
Vienna, Austria
, Standard No. IAEA-TECDOC-643.
4.
Hamidouche
,
T.
,
Bousbia-Salah
,
A.
,
Adorni
,
M.
, and
D'Auria
,
F.
,
2004
, “
Dynamic Calculations of the IAEA Safety MTR Research Reactor Benchmark Problem Using RELAP5/3.2 Code
,”
Ann. Nucl. Energy
,
31
(
12
), pp.
1385
1402
.10.1016/j.anucene.2004.03.008
5.
Bousbia-Salah
,
A.
, and
Hamidouche
,
T.
,
2005
, “
Analysis of the IAEA Research Reactor Benchmark Problem by the RETRAC-PC Code
,”
Nucl. Eng. Des.
,
235
(
6
), pp.
661
674
.10.1016/j.nucengdes.2004.10.004
6.
Gaheen
,
M.
,
Elaraby
,
S.
,
Naguib Aly
,
M.
, and
Nagy
,
M.
,
2007
, “
Simulation and Analysis of IAEA Benchmark Transients
,”
Prog. Nucl. Energy
,
49
(
3
), pp.
217
229
.10.1016/j.pnucene.2006.12.003
7.
Mazumdar
,
T.
,
Singh
,
T.
,
Gupta
,
H.
, and
Singh
,
K.
,
2012
, “
RITAC: Reactivity Initiated Transient Code—An Overview
,”
Ann. Nucl. Energy
,
43
, pp.
192
207
.10.1016/j.anucene.2011.11.013
8.
Chatoorgoon
,
V.
,
1986
, “
SPORTS—A Simple Non-Linear Thermalhydraulic Stability Code
,”
Nucl. Eng. Des.
,
93
(
1
), pp.
51
57
.10.1016/0029-5493(86)90194-9
9.
Aboanber
,
A.
, and
Hamada
,
Y.
,
2002
, “
PWS: An Efficient Code System for Solving Space-Independent Nuclear Reactor Dynamics
,”
Ann. Nucl. Energy
,
29
(
18
), pp.
2159
2172
.10.1016/S0306-4549(02)00034-8
10.
Aboanber
,
A. E.
, and
Hamada
,
Y. M.
,
2003
, “
Power Series Solution (PWS) of Nuclear Reactor Dynamics With Newtonian Temperature Feedback
,”
Ann. Nucl. Energy
,
30
(
10
), pp.
1111
1122
.10.1016/S0306-4549(03)00033-1
11.
Kinard
,
M.
, and
Allen
,
E.
,
2004
, “
Efficient Numerical Solution of the Point Kinetics Equations in Nuclear Reactor Dynamics
,”
Ann. Nucl. Energy
,
31
(
9
), pp.
1039
1051
.10.1016/j.anucene.2003.12.008
12.
Quintero-Leyva
,
B.
,
2008
, “
CORE: A Numerical Algorithm to Solve the Point Kinetics Equations
,”
Ann. Nucl. Energy
,
35
(
11
), pp.
2136
2138
.10.1016/j.anucene.2008.07.002
13.
Nahla
,
A. A.
,
2011
, “
An Efficient Technique for the Point Reactor Kinetics Equations With Newtonian Temperature Feedback Effects
,”
Ann. Nucl. Energy
,
38
(
12
), pp.
2810
2817
.10.1016/j.anucene.2011.08.021
14.
Ganapol
,
B.
,
2013
, “
A Highly Accurate Algorithm for the Solution of the Point Kinetics Equations
,”
Ann. Nucl. Energy
,
62
, pp.
564
571
.10.1016/j.anucene.2012.06.007
15.
Stacey
,
W.
,
2007
,
Nuclear Reactor Physics
,
Wiley-VCH
,
Weinheim
, pp.
143
190
.
16.
Todreas
,
N.
, and
Kazimi
,
M.
,
1993
,
Nuclear Systems I—Thermal Hydraulic Fundamentals
,
Taylor and Francis,
London
, pp.
461
570
.
17.
Groeneveld
,
D.
,
Shan
,
J.
,
Vasić
,
A.
,
Leung
,
L.
,
Durmayaz
,
A.
,
Yang
,
J.
,
Cheng
,
S.
, and
Tanase
,
A.
,
2007
, “
The 2006 CHF Look-Up Table
,”
Nucl. Eng. Des.
,
237
(
15–17
), pp.
1909
1922
.10.1016/j.nucengdes.2007.02.014
18.
Ishikawa
,
M.
,
Kuge
,
Y.
,
Ohnishi
,
N.
,
Takeuchi
,
E.
, and
Kanbayashi
,
Y.
,
1974
,
EUREKA: A Computer Code for Uranium-Oxide Fueled, Water Cooled Reactor Kinetic Analysis
,
JAERI
,
Tokai-mura, Japan
.
19.
Hairer
,
E.
, and
Wanner
,
G.
,
1999
, “
Stiff Differential Equations Solved by Radau Methods
,”
J. Comput. Appl. Math.
,
111
(
1–2
), pp.
93
111
.10.1016/S0377-0427(99)00134-X
20.
Butcher
,
J.
,
2008
,
Numerical Methods for Ordinary Differential Equations
, 2nd ed.,
Wiley
,
Chichester, UK
.
21.
Chapra
,
S.
, and
Canale
,
R.
,
2002
,
Numerical Methods for Engineers
, 4th ed.,
Tata McGraw-Hill Publishing Company
,
New Delhi, India
.
22.
IAEA-TECDOC
,
1992
,
Research Reactor Core Conversion Guidebook, Volume 1: Summary
,
IAEA
,
Vienna, Austria
, Standard No. IAEA-TECDOC-643.
You do not currently have access to this content.