The iron cross-section in thermal regions influences the thermal neutron flux prediction in steel structural components of reactors and also in regions adjoining them. The thermal neutron flux level is proportional to pin power density in fuel. This quantity is an important criterion reflected in limits and conditions of reactor operation. The new power density evaluation shows notable, well distinguishable discrepancy between calculations realized using the CENDL-3.1 nuclear data library and experimentally determined pin power density in boundary rows of pins. All experiments were carried out in a water–water energetic reactor (VVER-1000) transport mock-up placed in the LR-0 reactor.

References

1.
Košťál
,
M.
,
Švadlenková
,
M.
, and
Milčák
,
J.
,
2013
, “
Absolute Determination of Power Density in the VVER-1000 mock-up on the LR-0 Research Reactor
,”
Appl. Radiat. Isot.
,
78
, pp.
38
45
.
2.
Košťál
,
M.
,
Švadlenková
,
M.
, and
Milčák
,
J.
,
Rypar
,
V.
, and
Koleška
,
M.
,
2014
, “
Determination of Critical Assembly Absolute Power Using Post-Irradiation Activation Measurement of Week-Lived Fission Products
,”
Appl. Radiat. Isot.
,
89
, pp.
18
24
.
3.
Košťál
,
M.
,
Schulc
,
M.
,
Rypar
,
V.
,
Novák
,
E.
, and
Zaritskyi
,
S.
,
2015
, “
VVER-1000 mock-up Physics Experiments Hexagonal Lattices (1.275 cm Pitch) of Low Enriched U(2.0, 3.0, 3.3 wt.% 235U)O2 Fuel Assemblies in Light Water with H3BO3
,” ,
OECD, NEA
,
Paris, France
.
4.
Švadlenková
,
M.
,
Heraltová
,
L.
,
Juříček
,
V.
,
Košťál
,
M.
, and
Novák
,
E.
,
2014
, “
Gamma Spectrometry of Short Living Fission Products in Fuel Pins
,”
Nucl. Instrum. Method. Phys. Res. Sect. A
,
739
, pp.
55
62
.
5.
Kolros
,
A.
,
Huml
,
O.
,
Kříž
,
M.
, and
Kos
,
J.
,
2010
, “
Equipment for neutron measurements at VR-1 training reactor
,”
Appl. Radiat. Isot.
,
68
(
4–5
), pp.
570
574
.
6.
MCNP Version 5
,
2003
, “
A General Monte Carlo N-Particle Transport Code
,”
Los Alamos National Laboratory
, Los Alamos, NM.
7.
Chadwick
,
M. B.
, et al.,
2006
, “
ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology
,”
Nucl. Data Sheets
,
107
(
12
), pp.
2931
3060
.
8.
Ge
,
Z. G.
, et al.,
2010
, “
The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1)
,”
Proceedings of International Conference on Nuclear Datafor Science and Technology
,
Journal of the Korean Physical Society
,
South Korea
, pp.
26
30
.
9.
Shibata
,
K.
, et al.,
2002
, “
Japanese Evaluted Nuclear Data Library Version 3 Revision 3: JENDL-3.3
,”
J. Nucl. Sci. Technol.
,
39
,
1125
.
10.
Shibata
,
K.
, et al.,
2011
, “
JENDL-4.0: A New Library for Nuclear Science and Engineering
,”
J. Nucl. Sci. Technol.
,
48
, pp.
1
30
.
11.
Koning
,
A.
,
Forrest
,
R.
,
Kellett
,
M.
,
Mills
,
R.
,
Henriksson
,
H.
, and
Rugama
,
Y.
,
2006
, “
The JEFF-3.1 Nuclear Library
,” ,
OECD NEA
,
Paris, France
.
12.
Koning
,
A.
, et al.,
2010
, “
Status of the JEFF Nuclear Data Library
,”
Proceedings of the International Conference on Nuclear Data for Science and Technology
,
Korea
, p.
1057
.
13.
Koning
,
A. J.
, et al.,
2013
, “
TENDL-2013: TALYS-Based Evaluated Nuclear Data Library
.” ⟨http://www.talys.eu/tendl-2013⟩.
14.
Zabrodskaya
,
S. V.
,
Ignatyuk
,
A. V.
,
Kosheev
,
V.
,
Manochin
,
V. N.
,
Nikolaev
,
M. N.
, and
Pronyaev
,
V. G.
,
2007
, “
ROSFONDRussian National Library of Neutron Data VANT
,”
Ser. Nucl. Const.
, pp.
1
21
.
15.
Mac Farlane
,
R. E.
, and
Muir
,
D. W.
,
1994
, “
The NJOY Nuclear Data Processing System
,” Version 91, ,
Los Alamos National Laboratory
,
Los Alamos, NM
.
16.
Košťál
,
M.
,
Švadlenková
,
M.
, and
Milčák
,
J.
,
2014
, “
The Application and Comparison of Sr97 and Sr92 in the Absolute Determination of the Contribution of Power Density and Cladding Activation in a VVER-1000 mock-up on the LR-0 Research Reactor
,”
Nucl. Instrum. Method. Phys. Res. A
,
738
, pp.
87
92
.
17.
Rochman
,
D.
,
Koning
,
A. J.
, and
van der Marck
,
S. C.
,
2015
, “
Improving Neutronics Simulations and Uncertainties Via a Selection of Nuclear Data
,”
Eur. Phys. J.
,
A51
,
182
.
18.
Košťál
,
M.
,
Milčák
,
J.
,
Rypar
,
V.
,
Juříček
,
V.
,
Novák
,
E.
, and
Kolros
,
A.
,
2013
, “
The Effect of Biological Shielding on Neutron Transport in the VVER-1000 mock-up on the LR-0 Research Reactor
,”
Ann. Nucl. Energy
,
53
,
129
.
19.
Košťál
,
M.
, et al.,
2016
, “
Neutron Deep Penetration through Reactor Baffle, Barrel, Pressure Vessel and Biological Concrete Shield of VVER-1000 mock-up in LR-0 Reactor
,”
Ann. Nucl. Energy
,
94
,
672
.
20.
Rindelhardt
,
U.
,
Viehrig
,
H. W.
,
Konheiser
,
J.
,
Schuhknecht
,
J.
,
Noack
,
K.
, and
Gleisberg
,
B.
,
2009
, “
RPV Material investigations of the Former VVER-440 Greifswald NPP
,”
Nucl. Eng. Des.
,
239
(
9
), pp.
1581
1590
.
21.
Konheiser
,
J.
,
Mittag
,
S.
, and
Zaritsky
,
S.
,
2009
, “
Neutron Fluence Calculations for Embrittlement Surveillance Specimens in VVER-1000
,”
Ann. Nucl. Energy
,
36
(
8
), pp.
1235
1241
.
22.
Garat
,
C.
, and
Rieg
,
C.-Y.
,
1997
, “
Validation of Neutron Propagation Calculations Using the DORT and DOTSYN Codes and the Special Dosimetry Benchmark Experiment at the French St. Laurent Reactor
,”
Nucl. Eng. Des.
,
168
(
1–3
), pp.
281
291
.
23.
Pittarello
,
R.
,
Vasiliev
,
A.
,
Ferroukhi
,
H.
, and
Chawla
,
R.
,
2011
, “
Refined Monte Carlo Analysis of the H.B. Robinson-2 Reactor Pressure Vessel Dosimetry Benchmark
,”
Ann. Nucl. Energy
,
38
, pp.
1842
1851
.
24.
Dupré
,
A.
,
Vasiliev
,
A.
,
Ferroukhi
,
H.
, and
Pautz
,
A.
,
2015
, “
Towards Modeling and Validation Enhancements of the PSI MCNPX Fast Neutron Fluence Computational Scheme Based on Recent PWR Experimental Data
,”
Ann. Nucl. Energy
,
85
, pp.
820
829
.
You do not currently have access to this content.