Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Accurate fatigue crack width estimation is crucial for aircraft safety, however, limited research exists on (i) the direct relationship between fatigue crack width and Lamb wave signatures and (ii) probabilistic artificial intelligence approach for automated analysis using acoustic emission waveforms. This paper presents a probabilistic deep learning approach for fatigue crack width estimation, employing an automated wavelet feature extractor and probabilistic Bayesian neural network. A dataset constituting the fatigue experiment on aluminum lap joint specimens is considered, in which Lamb wave signals were recorded at several time instants for each specimen. Signals acquired from the piezo actuator–receiver sensor pairs are related to the optically measured surface crack length. The sensitive features are automatically extracted from the signals using decomposition techniques called maximal overlap discrete wavelet transform (MODWT). The extracted features are then mapped through the deep learning model, which incorporates Bayesian inference to account for both aleatoric as well as epistemic uncertainty, that provides outcomes in the form of providing probabilistic estimates of crack width with uncertainty quantification. Thus, employing an automated wavelet feature extractor (MODWT) on a dataset of fatigue experiments, the framework learns the relationship between Lamb wave signals and crack width. Validation on unseen in situ data demonstrates the efficacy of the approach for practical implementation, paving the way for more reliable fatigue life prognosis.

References

1.
Mutlib
,
N. K.
,
Baharom
,
S. B.
,
El-Shafie
,
A.
, and
Nuawi
,
M. Z.
,
2016
, “
Ultrasonic Health Monitoring in Structural Engineering: Buildings and Bridges
,”
Struct. Contr. Health Monit.
,
23
(
3
), pp.
409
422
.
2.
Farrar
,
C. R.
, and
Worden
,
K.
,
2012
,
Structural Health Monitoring: A Machine Learning Perspective
,
John Wiley & Sons
,
West Sussex, UK
.
3.
Yang
,
Y.
, and
Ma
,
F.
,
2003
, “
Constrained Kalman Filter for Nonlinear Structural Identification
,”
ASME J. Vib. Contr.
,
9
(
12
), pp.
1343
1357
.
4.
Yang
,
J. N.
,
Lin
,
S.
,
Huang
,
H.
, and
Zhou
,
L.
,
2006
, “
An Adaptive Extended Kalman Filter for Structural Damage Identification
,”
Struct. Contr. Health Monit.
,
13
(
4
), pp.
849
867
.
5.
Ojha
,
S.
,
Kalimullah
,
N. M.
, and
Shelke
,
A.
,
2022
, “
Application of Constrained Unscented Kalman Filter (CUKF) for System Identification of Coupled Hysteresis Under Bidirectional Excitation
,”
Struct. Contr. Health Monit.
,
29
(
12
), p.
e3115
.
6.
Ojha
,
S.
,
Pamwani
,
L. G.
, and
Shelke
,
A.
,
2020
, “
Damage Detection in Base-Isolated Steel Structure Using Singular Spectral Analysis
,”
Indian Structural Steel Conference
,
Hyderabad, India
,
Mar. 25–27
, Springer, pp.
387
401
.
7.
Pamwani
,
L.
, and
Shelke
,
A.
,
2018
, “
Damage Detection Using Dissimilarity in Phase Space Topology of Dynamic Response of Structure Subjected to Shock Wave Loading
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
1
(
4
), p.
041004
.
8.
Rajeev
,
A.
,
Pamwani
,
L.
,
Ojha
,
S.
, and
Shelke
,
A.
,
2023
, “
Adaptive Autoregressive Modelling Based Structural Health Monitoring of Rc Beam-Column Joint Subjected to Shock Loading
,”
Struct. Health Monit.
,
22
(
2
), pp.
1049
1068
.
9.
Sohn
,
H.
, and
Farrar
,
C. R.
,
2001
, “
Damage Diagnosis Using Time Series Analysis of Vibration Signals
,”
Smart Mater. Struct.
,
10
(
3
), p.
446
.
10.
Nair
,
K. K.
,
Kiremidjian
,
A. S.
, and
Law
,
K. H.
,
2006
, “
Time Series-Based Damage Detection and Localization Algorithm With Application to the ASCE Benchmark Structure
,”
J. Sound Vib.
,
291
(
1–2
), pp.
349
368
.
11.
Rezaeianjouybari
,
B.
, and
Shang
,
Y.
,
2020
, “
Deep Learning for Prognostics and Health Management: State of the Art, Challenges, and Opportunities
,”
Measurement
,
163
, p.
107929
.
12.
Lei
,
Y.
,
Yang
,
B.
,
Jiang
,
X.
,
Jia
,
F.
,
Li
,
N.
, and
Nandi
,
A. K.
,
2020
, “
Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap
,”
Mech. Syst. Signal Process.
,
138
, p.
106587
.
13.
Chen
,
J.
,
Huang
,
R.
,
Chen
,
Z.
,
Mao
,
W.
, and
Li
,
W.
,
2023
, “
Transfer Learning Algorithms for Bearing Remaining Useful Life Prediction: A Comprehensive Review From an Industrial Application Perspective
,”
Mech. Syst. Signal Process.
,
193
, p.
110239
.
14.
Xu
,
Y.
,
Kohtz
,
S.
,
Boakye
,
J.
,
Gardoni
,
P.
, and
Wang
,
P.
,
2023
, “
Physics-Informed Machine Learning for Reliability and Systems Safety Applications: State of the Art and Challenges
,”
Reliab. Eng. Syst. Saf.
,
230
, p.
108900
.
15.
Salehi
,
H.
, and
Burgueño
,
R.
,
2018
, “
Emerging Artificial Intelligence Methods in Structural Engineering
,”
Eng. Struct.
,
171
, pp.
170
189
.
16.
Ochella
,
S.
,
Shafiee
,
M.
, and
Dinmohammadi
,
F.
,
2022
, “
Artificial Intelligence in Prognostics and Health Management of Engineering Systems
,”
Eng. Appl. Artif. Intell.
,
108
, p.
104552
.
17.
Prakash
,
G.
,
Yuan
,
X.-X.
,
Hazra
,
B.
, and
Mizutani
,
D.
,
2021
, “
Toward a Big Data-Based Approach: A Review on Degradation Models for Prognosis of Critical Infrastructure
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
4
(
2
), p.
021005
.
18.
Bagheri
,
A.
,
Li
,
K.
, and
Rizzo
,
P.
,
2013
, “
Reference-Free Damage Detection by Means of Wavelet Transform and Empirical Mode Decomposition Applied to Lamb Waves
,”
J. Intell. Mater. Syst. Struct.
,
24
(
2
), pp.
194
208
.
19.
Farhidzadeh
,
A.
,
Dehghan-Niri
,
E.
,
Salamone
,
S.
,
Luna
,
B.
, and
Whittaker
,
A.
,
2013
, “
Monitoring Crack Propagation in Reinforced Concrete Shear Walls by Acoustic Emission
,”
J. Struct. Eng.
,
139
(
12
), p.
04013010
.
20.
Giurgiutiu
,
V.
,
Zagrai
,
A.
, and
Jing Bao
,
J.
,
2002
, “
Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring
,”
Struct. Health Monit.
,
1
(
1
), pp.
41
61
.
21.
Ihn
,
J.-B.
, and
Chang
,
F.-K.
,
2004
, “
Detection and Monitoring of Hidden Fatigue Crack Growth Using a Built-In Piezoelectric Sensor/actuator Network: I. Diagnostics
,”
Smart Mater. Struct.
,
13
(
3
), p.
609
.
22.
Keilers Jr
,
C. H.
, and
Chang
,
F. -K.
,
1995
, “
Identifying Delamination in Composite Beams Using Built-In Piezoelectrics: Part I—Experiments and Analysis
,”
J. Intell. Mater. Syst. Struct.
,
6
(
5
), pp.
649
663
.
23.
Kim
,
S. B.
,
Lee
,
C. G.
,
Hong
,
J.-W.
,
Park
,
H. W.
, and
Sohn
,
H.
,
2010
, “
Applications of an Instantaneous Damage Detection Technique to Plates With Additional Complexities
,”
J. Nondest. Eval.
,
29
, pp.
189
205
.
24.
Kudela
,
P.
,
Ostachowicz
,
W.
, and
Żak
,
A.
,
2008
, “
Damage Detection in Composite Plates With Embedded PZT Transducers
,”
Mech. Syst. Signal Process.
,
22
(
6
), pp.
1327
1335
.
25.
Farrar
,
C. R.
, and
Worden
,
K.
,
2007
, “
An Introduction to Structural Health Monitoring
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
303
315
.
26.
Giurgiutiu
,
V.
,
2007
,
Structural Health Monitoring: With Piezoelectric Wafer Active Sensors
, 2nd ed.,
Academic Press
,
Oxford, OK
.
27.
Viktorov
,
I. A.
,
1967
,
Rayleigh and Lamb Waves
,
Plenum Press
,
New York
.
28.
Lu
,
Y.
,
Ye
,
L.
,
Su
,
Z.
, and
Yang
,
C.
,
2008
, “
Quantitative Assessment of Through-Thickness Crack Size Based on Lamb Wave Scattering in Aluminium Plates
,”
NDT E Int.
,
41
(
1
), pp.
59
68
.
29.
Wang
,
C. H.
,
Rose
,
J. T.
, and
Chang
,
F.-K.
,
2004
, “
A Synthetic Time-Reversal Imaging Method for Structural Health Monitoring
,”
Smart Mater. Struct.
,
13
(
2
), p.
415
.
30.
Fromme
,
P.
, and
Sayir
,
M. B.
,
2002
, “
Detection of Cracks at Rivet Holes Using Guided Waves
,”
Ultrasonics
,
40
(
1–8
), pp.
199
203
.
31.
Le Clézio
,
E.
,
Castaings
,
M.
, and
Hosten
,
B.
,
2002
, “
The Interaction of the S0 Lamb Mode With Vertical Cracks in an Aluminium Plate
,”
Ultrasonics
,
40
(
1–8
), pp.
187
192
.
32.
Cornish
,
C. R.
,
Bretherton
,
C. S.
, and
Percival
,
D. B.
,
2006
, “
Maximal Overlap Wavelet Statistical Analysis With Application to Atmospheric Turbulence
,”
Bound. Layer Meteorol.
,
119
, pp.
339
374
.
33.
Percival
,
D. B.
, and
Walden
,
A. T.
,
2000
,
Wavelet Methods for Time Series Analysis
, Vol.
4
,
Cambridge University Press
,
New York
.
34.
Giurgiutiu
,
V.
,
2005
, “
Tuned Lamb Wave Excitation and Detection With Piezoelectric Wafer Active Sensors for Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
4
), pp.
291
305
.
35.
Lemistre
,
M.
, and
Balageas
,
D.
,
2001
, “
Structural Health Monitoring System Based on Diffracted Lamb Wave Analysis by Multiresolution Processing
,”
Smart Mater. Struct.
,
10
(
3
), p.
504
.
36.
Kundu
,
T.
,
Das
,
S.
, and
Jata
,
K. V.
,
2007
, “
Point of Impact Prediction in Isotropic and Anisotropic Plates From the Acoustic Emission Data
,”
J. Acoust. Soc. Am.
,
122
(
4
), pp.
2057
2066
.
37.
Li
,
D.
,
Nie
,
J.-H.
,
Ren
,
W.-X.
,
Ng
,
W.-H.
,
Wang
,
G.-H.
, and
Wang
,
Y.
,
2022
, “
A Novel Acoustic Emission Source Location Method for Crack Monitoring of Orthotropic Steel Plates
,”
Eng. Struct.
,
253
, p.
113717
.
38.
Cheng
,
L.
,
Xin
,
H.
,
Groves
,
R. M.
, and
Veljkovic
,
M.
,
2021
, “
Acoustic Emission Source Location Using Lamb Wave Propagation Simulation and Artificial Neural Network for I-Shaped Steel Girder
,”
Constr. Build. Mater.
,
273
, p.
121706
.
39.
Sen
,
N.
, and
Kundu
,
T.
,
2022
, “
A New Signal Energy-Based Approach to Acoustic Source Localization in Orthotropic Plates: A Numerical Study
,”
Mech. Syst. Signal Process.
,
171
, p.
108843
.
40.
Jones
,
M. R.
,
Rogers
,
T. J.
,
Worden
,
K.
, and
Cross
,
E. J.
,
2022
, “
A Bayesian Methodology for Localising Acoustic Emission Sources in Complex Structures
,”
Mech. Syst. Signal Process.
,
163
, p.
108143
.
41.
Ojha
,
S.
,
Shelke
,
A.
,
Tiwari
,
S. B.
,
Santhosh
,
B.
,
Thomas
,
S.
, and
Habib
,
A.
,
2023
, “
Damage Localization in Plates Using Energy of Acoustic Emission Through Gaussian Process Regression
,”
50th Annual Review of Progress in Quantitative Nondestructive Evaluation
, Vol.
87202
,
American Society of Mechanical Engineers
, p.
V001T09A006
.
42.
Boller
,
C.
, and
Buderath
,
M.
,
2007
, “
Fatigue in Aerostructures-Where Structural Health Monitoring Can Contribute to a Complex Subject
,”
Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
,
365
(
1851
), pp.
561
587
.
43.
De Marchi
,
L.
,
Perelli
,
A.
, and
Marzani
,
A.
,
2013
, “
A Signal Processing Approach to Exploit Chirp Excitation in Lamb Wave Defect Detection and Localization Procedures
,”
Mech. Syst. Signal Process.
,
39
(
1–2
), pp.
20
31
.
44.
Watkins
,
R.
, and
Jha
,
R.
,
2012
, “
A Modified Time Reversal Method for Lamb Wave Based Diagnostics of Composite Structures
,”
Mech. Syst. Signal Process.
,
31
, pp.
345
354
.
45.
He
,
J.
,
Guan
,
X.
,
Peng
,
T.
,
Liu
,
Y.
,
Saxena
,
A.
,
Celaya
,
J.
, and
Goebel
,
K.
,
2013
, “
A Multi-Feature Integration Method for Fatigue Crack Detection and Crack Length Estimation in Riveted Lap Joints Using Lamb Waves
,”
Smart Mater. Struct.
,
22
(
10
), p.
105007
.
46.
Peng
,
T.
,
He
,
J.
,
Xiang
,
Y.
,
Liu
,
Y.
,
Saxena
,
A.
,
Celaya
,
J.
, and
Goebel
,
K.
,
2015
, “
Probabilistic Fatigue Damage Prognosis of Lap Joint Using Bayesian Updating
,”
J. Intell. Mater. Syst. Struct.
,
26
(
8
), pp.
965
979
.
47.
Box
,
G. E.
, and
Tiao
,
G. C.
,
2011
,
Bayesian Inference in Statistical Analysis
, Revised ed.,
John Wiley & Sons
,
New York
.
48.
Dempster
,
A. P.
,
1968
, “
A Generalization of Bayesian Inference
,”
J. R. Stat. Soc.: Series B (Methodol.)
,
30
(
2
), pp.
205
232
.
49.
Kendall
,
A.
, and
Gal
,
Y.
,
2017
, “
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Adv. Neural Inf. Processing Syst.
,
30
(
1
), pp.
5574
5584
.
50.
Bishop
,
C.
,
2006
,
Pattern Recognition and Machine Learning
, 1st ed.,
Springer
,
New York
.
51.
Garrett
,
J. C.
,
Mei
,
H.
, and
Giurgiutiu
,
V.
,
2022
, “
An Artificial Intelligence Approach to Fatigue Crack Length Estimation From Acoustic Emission Waves in Thin Metallic Plates
,”
Appl. Sci.
,
12
(
3
), p.
1372
.
52.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
J. Basic Eng.
,
85
(
4
), pp.
528
533
.
53.
Yang
,
J.
,
He
,
J.
,
Guan
,
X.
,
Wang
,
D.
,
Chen
,
H.
,
Zhang
,
W.
, and
Liu
,
Y.
,
2016
, “
A Probabilistic Crack Size Quantification Method Using In-Situ Lamb Wave Test and Bayesian Updating
,”
Mech. Syst. Signal Process.
,
78
, pp.
118
133
.
54.
Huang
,
N. E.
,
Shen
,
Z.
,
Long
,
S. R.
,
Wu
,
M. C.
,
Shih
,
H. H.
,
Zheng
,
Q.
,
Yen
,
N.-C.
,
Tung
,
C. C.
, and
Liu
,
H. H.
,
1998
, “
The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis
,”
Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci.
,
454
(
1971
), pp.
903
995
.
55.
Nason
,
G. P.
,
2008
,
Wavelet Methods in Statistics With R
,
Springer
,
New York
.
56.
Wu
,
Y.-C.
, and
Feng
,
J.-W.
,
2018
, “
Development and Application of Artificial Neural Network
,”
Wire. Person. Commun.
,
102
, pp.
1645
1656
.
57.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
. https://www.jstor.org/stable/2334940
58.
Blei
,
D. M.
,
Kucukelbir
,
A.
, and
McAuliffe
,
J. D.
,
2017
, “
Variational Inference: A Review for Statisticians
,”
J. Am. Stat. Assoc.
,
112
(
518
), pp.
859
877
.
59.
Hoffman
,
M. D.
,
Gelman
,
A.
, et al.
2014
, “
The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo
,”
J. Mach. Learn. Res.
,
15
(
1
), pp.
1593
1623
.
60.
Kullback
,
S.
, and
Leibler
,
R. A.
,
1951
, “
On Information and Sufficiency
,”
Ann. Math. Stat.
,
22
(
1
), pp.
79
86
.
61.
Shannon
,
C. E.
,
1948
, “
A Mathematical Theory of Communication
,”
Bell Syst. Tech. J.
,
27
(
3
), pp.
379
423
.
62.
Liu
,
Y.
, and
Peng
,
T.
,
2019
, “
Fatigue Crack Growth in Aluminum Lap Joint
,” Prognostics Center of Excellence Data Set Repository, https://www.nasa.gov/intelligent-systems-division/discovery-and-systems-health/pcoe/pcoe-data-set-repository/.
63.
Sriramula
,
S.
, and
Chryssanthopoulos
,
M. K.
,
2009
, “
Quantification of Uncertainty Modelling in Stochastic Analysis of FRP Composites
,”
Compos. Part A: Appl. Sci. Manuf.
,
40
(
11
), pp.
1673
1684
.
64.
Xiang
,
Y.
, and
Liu
,
Y.
,
2011
, “
An Equivalent Stress Level Model for Efficient Fatigue Crack Growth Prediction
,”
52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th AIAA/ASME/AHS Adaptive Structures Conference 13t
,
Denver, CO
,
Apr. 4–11
.
65.
Liu
,
Y.
, and
Mahadevan
,
S.
,
2009
, “
Probabilistic Fatigue Life Prediction Using an Equivalent Initial Flaw Size Distribution
,”
Int. J. Fatigue
,
31
(
3
), pp.
476
487
.
You do not currently have access to this content.