Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The major concept of the future Industrial 4.0 framework is the integration of artificial intelligence (AI) and the implementation of digital twin (DT), which avoids serious economic losses caused by unexpected equipment failures and significantly improves system reliability. DT is an emerging technology in the context of digital transformation that enables the monitoring, diagnosis, energy efficiency, and optimization of different systems. Numerous initiatives have shown how AI can enhance the performance of DT for industrial applications. This paper describes a data-based DT architecture for the monitoring, and predictive maintenance (PdM) in manufacturing. This new concept is based on deep learning, specifically the autoencoder model. The system was tested on a real industry example, by developing the data collection, data system analysis, and applying the deep learning approach. The data were collected from a Profinet communication network installed on an automated system. This approach enables better quality results and more efficient management of the weaver's workshop. Lastly, to prove the efficiency and the accuracy of the newly developed approach, an example is shown.

References

1.
Zhong
,
D.
,
Xia
,
Z.
,
Zhu
,
Y.
, and
Duan
,
J.
,
2023
, “
Overview of Predictive Maintenance Based on Digital Twin Technology
,”
Heliyon
,
9
(
4
), p.
e14534
.
2.
Kaewunruen
,
S.
,
AbdelHadi
,
M.
,
Kongpuang
,
M.
,
Pansuk
,
W.
, and
Remennikov
,
A. M.
,
2023
, “
Digital Twins for Managing Railway Bridge Maintenance, Resilience, and Climate Change Adaptation
,”
Sensors
,
23
(
1
), p.
252
.
3.
van Dinter
,
R.
,
Tekinerdogan
,
B.
, and
Catal
,
C.
,
2022
, “
Predictive Maintenance Using Digital Twins: A Systematic Literature Review
,”
Inf. Softw. Technol.
,
151
, p.
107008
.
4.
Rojek
,
I.
,
Mikołajewski
,
D.
, and
Dostatni
,
E.
,
2021
, “
Digital Twins in Product Life Cycle for Sustainability in Manufacturing and Maintenance
,”
Appl. Sci.
,
11
(
1
), p.
31
.
5.
You
,
Y.
,
Chen
,
C.
,
Hu
,
F.
,
Liu
,
Y.
, and
Ji
,
Z.
,
2022
, “
Advances of Digital Twins for Predictive Maintenance
,”
Procedia Comput. Sci.
,
200
, pp.
1471
1480
.
6.
van Dinter
,
R.
,
Tekinerdogan
,
B.
, and
Catal
,
C.
,
2023
, “
Reference Architecture for Digital Twin-Based Predictive Maintenance Systems
,”
Comput. Ind. Eng.
,
177
, p.
109099
.
7.
Panagou
,
S.
,
Fruggiero
,
F.
,
Lerra
,
M.
, and
del Vecchio
,
C.
,
2022
, “
Feature Investigation With Digital Twin for Predictive Maintenance Following a Machine Learning Approach
,”
IFAC-PapersOnLine
,
55
(
2
), pp.
132
137
.
8.
Perno
,
M.
,
Hvam
,
L.
, and
Haug
,
A.
,
2023
, “
A Machine Learning Digital Twin Approach for Critical Process Parameter Prediction in a Catalyst Manufacturing Line
,”
Comput. Ind.
,
151
, p.
10398
.
9.
Harries
,
T.
,
Hartnoll
,
M.
,
Hafezianrazavi
,
M.
,
Meek
,
H.
, and
Nassehi
,
A.
,
2023
, “
Digital Twins for Predictive Maintenance
,”
Procedia CIRP
,
118
, pp.
306
311
.
10.
Werner
,
A.
,
Zimmermann
,
N.
, and
Lentes
,
J.
,
2019
, “
Approach for a Holistic Predictive Maintenance Strategy by Incorporating a Digital Twin
,”
Procedia Manuf.
,
39
, pp.
1743
1751
.
11.
Liu
,
Z.
,
Chen
,
W.
,
Zhang
,
C.
,
Yang
,
C.
, and
Chu
,
H.
,
2019
, “
Data Super-Network Fault Prediction Model and Maintenance Strategy for Mechanical Product Based on Digital Twin
,”
IEEE Access
,
7
, pp.
177284
177296
.
12.
Hosamo
,
H.
,
Svennevig
,
P. R.
,
Svidt
,
K.
,
Han
,
D.
, and
Nielsen
,
H. K.
,
2022
, “
A Digital Twin Predictive Maintenance Framework of Air Handling Units Based on Automatic Fault Detection and Diagnostics
,”
J. Energy Build.
,
261
, p.
111988
.
13.
Daviesa
,
O.
,
Makkattila
,
A.
,
Jianga
,
C.
, and
Farsia
,
M.
,
2022
, “
A Digital Twin Design for Maintenance Optimization
,”
Procedia CIRP
,
109
, pp.
395
400
.
14.
Wang
,
L.
,
Wang
,
C.
,
Li
,
X.
,
Song
,
X.
, and
Xu
,
D.
,
2023
, “
State Perception and Prediction of Digital Twin Based on Proxy Model
,”
IEEE Access
,
11
, pp.
36064
36072
.
15.
Soori
,
M.
,
Arezoo
,
B.
, and
Dastres
,
R.
,
2023
, “
Digital Twin for Smart Manufacturing: A Review
,”
Sustain. Manuf. Serv. Econ.
,
2
, p.
100017
.
16.
Friederich
,
J.
,
Francis
,
D. P.
,
Lazarova-Molnar
,
S.
, and
Mohamed
,
N.
,
2022
, “
A Framework for Data-Driven Digital Twins of Smart Manufacturing Systems
,”
Comput. Ind.
,
136
, p.
103586
.
17.
Wu
,
Z.
, and
Li
,
J.
,
2021
, “
A Framework of Dynamic Data Driven Digital Twin for Complex Engineering Products: The Example of Aircraft Engine Health Management
,”
Procedia Manuf.
,
55
, pp.
139
146
.
18.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
.
You do not currently have access to this content.