Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Fiber-reinforced polymer (FRP) composites have attracted significant attention from the aerospace industry in recent years. FRP composites have the advantage of being light weight, high strength, and resistant to corrosion making them an attractive option for various applications in the aerospace industry. However, FRP composites are prone to delamination which can eventually compromise structural integrity leading to sudden failure. An effective damage detection methodology is therefore necessary to monitor delamination in structures. In this study, mechano-luminescence-optoelectronic (MLO) composites were integrated with FRP composites to create MLO-FRP test coupons for delamination detection. The MLO composites were prepared by coupling a poly(3-hexylthiophene) (P3HT)-based sensor with a copper dopped zinc sulfide (ZnS:Cu) composite. MLO composites were attached to the surface of FRP composites to create MLO-FRP test coupons. The MLO-FRP test coupon was mounted on a 3-point bending load frame and subjected to cyclic loading and unloadings at various displacements with the first displacement starting from zero to 5 mm, the second displacement starting from zero to 6 mm, and so on. A direct current (DC) voltage was recorded from the MLO composites at a constant loading rate to validate its DC-based strain sensing capability. Other parameters such as applied load, strain energy release rate, and strain were also obtained with the aim of tracking delamination propagation in FRP composites. Results showed that MLO composites were sensitive to delamination propagation highlighting their potential to be used in structures for health monitoring.

References

1.
Çelik
,
A.
,
Lazoglu
,
I.
,
Kara
,
A.
, and
Kara
,
F.
,
2015
, “
Investigation on the Performance of SiAlON Ceramic Drills on Aerospace Grade CFRP Composites
,”
J. Mater. Process. Technol.
,
223
, pp.
39
47
.
2.
Jokinen
,
J.
, and
Kanerva
,
M.
,
2019
, “
Simulation of Delamination Growth at CFRP-Tungsten Aerospace Laminates Using VCCT and CZM Modelling Techniques
,”
Appl. Compos. Mater.
,
26
(
3
), pp.
709
721
.
3.
Al-Lami
,
A.
,
Hilmer
,
P.
, and
Sinapius
,
M.
,
2018
, “
Eco-Efficiency Assessment of Manufacturing Carbon Fiber Reinforced Polymers (CFRP) in Aerospace Industry
,”
Aerosp. Sci. Technol.
,
79
, pp.
669
678
.
4.
Bond
,
I. P.
,
Williams
,
M. G. J.
, and
Trask
,
R. S.
,
2007
, “
Self-Healing CFRP for Aerospace Applications
,”
Proceedings of the 16th International Conference on Composite Materials (ICCM16)
,
Kyoto, Japan
,
July 8–13
.
5.
Yang
,
B.
,
Huang
,
Y.
, and
Cheng
,
L.
,
2013
, “
Defect Detection and Evaluation of Ultrasonic Infrared Thermography for Aerospace CFRP Composites
,”
Infrared Phys. Technol.
,
60
, pp.
166
173
.
6.
Teti
,
R.
,
Segreto
,
T.
,
Caggiano
,
A.
, and
Nele
,
L.
,
2020
, “
Smart Multi-Sensor Monitoring in Drilling of CFRP/CFRP Composite Material Stacks for Aerospace Assembly Applications
,”
Appl. Sci.
,
10
(
3
), p.
758
.
7.
Krebs
,
F.
,
Larsen
,
L.
,
Braun
,
G.
, and
Dudenhausen
,
W.
,
2016
, “
Design of a Multifunctional Cell for Aerospace CFRP Production
,”
Int. J. Adv. Manuf. Technol.
,
85
(
1
), pp.
17
24
.
8.
Hashish
,
M.
, and
Kent
,
W.
,
2013
, “
Trimming of CFRP Aircraft Components
,”
WJTA-IMCA Conference and Expo
,
Houston, TX
,
Sept. 9–11
.
9.
Mongare
,
A.
, and
Ryu
,
D.
,
2021
, “
Delamination Detection in Fiber-Reinforced Polymers Using Mechanoluminescence-Optoelectronic Strain Sensor
,”
Smart Materials, Adaptive Structures and Intelligent Systems
,
Virtual, Online
,
Sept. 14–15
.
10.
Matsuzaki
,
R.
, and
Todoroki
,
A.
,
2006
, “
Wireless Detection of Internal Delamination Cracks in CFRP Laminates Using Oscillating Frequency Changes
,”
Compos. Sci. Technol.
,
66
(
3–4
), pp.
407
416
.
11.
Sans
,
D.
,
Stutz
,
S.
,
Renart
,
J.
,
Mayugo
,
J. A.
, and
Botsis
,
J.
,
2012
, “
Crack Tip Identification With Long FBG Sensors in Mixed-Mode Delamination
,”
Compos. Struct.
,
94
(
9
), pp.
2879
2887
.
12.
Wang
,
G.
,
Wang
,
Y.
,
Zhang
,
P.
,
Zhai
,
Y.
,
Luo
,
Y.
,
Li
,
L.
, and
Luo
,
S.
,
2018
, “
Structure Dependent Properties of Carbon Nanomaterials Enabled Fiber Sensors for In Situ Monitoring of Composites
,”
Compos. Struct.
,
195
, pp.
36
44
.
13.
Takeda
,
S.-I.
,
Aoki
,
Y.
, and
Nagao
,
Y.
,
2012
, “
Damage Monitoring of CFRP Stiffened Panels Under Compressive Load Using FBG Sensors
,”
Compos. Struct.
,
94
(
3
), pp.
813
819
.
14.
Mieloszyk
,
M.
,
Majewska
,
K.
, and
Ostachowicz
,
W.
,
2021
, “
Application of Embedded Fibre Bragg Grating Sensors for Structural Health Monitoring of Complex Composite Structures for Marine Applications
,”
Marine Struct.
,
76
, p.
102903
.
15.
Guo
,
H.
,
Xiao
,
G.
,
Mrad
,
N.
, and
Yao
,
J.
,
2011
, “
Fiber Optic Sensors for Structural Health Monitoring of Air Platforms
,”
Sensors
,
11
(
4
), pp.
3687
3705
.
16.
Yuan
,
L.
,
Fan
,
W.
,
Yang
,
X.
,
Ge
,
S.
,
Xia
,
C.
,
Foong
,
S. Y.
,
Liew
,
R. K.
, et al
,
2021
, “
Piezoelectric PAN/BaTiO3 Nanofiber Membranes Sensor for Structural Health Monitoring of Real-Time Damage Detection in Composite
,”
Compos. Commun.
,
25
, p.
100680
.
17.
Shen
,
W.-A.
,
Zhu
,
S.
, and
Xu
,
Y.-L.
,
2012
, “
An Experimental Study on Self-powered Vibration Control and Monitoring System Using Electromagnetic TMD and Wireless Sensors
,”
Sens. Actuators A
,
180
, pp.
166
176
.
18.
Garcia
,
C.
,
Trendafilova
,
I.
, and
Sanchez del Rio
,
J.
,
2019
, “
Detection and Measurement of Impacts in Composite Structures Using a Self-Powered Triboelectric Sensor
,”
Nano Energy
,
56
, pp.
443
453
.
19.
Lier
,
J. V.
,
Bruyn
,
P. D.
, and
Overbeek
,
J. T. G.
,
1960
, “
The Solubility of Quartz
,”
J. Phys. Chem.
,
64
(
11
), pp.
1675
1682
.
20.
Uchino
,
K.
,
2018
, “
Piezoelectric Energy Harvesting Systems—Essentials to Successful Developments
,”
Energy Technol.
,
6
(
5
), pp.
829
848
.
21.
Sekhar
,
M. C.
,
Veena
,
E.
,
Kumar
,
N. S.
,
Naidu
,
K. C. B.
,
Mallikarjuna
,
A.
, and
Basha
,
D. B.
,
2023
, “
A Review on Piezoelectric Materials and Their Applications
,”
Cryst. Res. Technol.
,
58
(
2
), p.
2200130
.
22.
Tressler
,
J. F.
,
Alkoy
,
S.
, and
Newnham
,
R. E.
,
1998
, “
Piezoelectric Sensors and Sensor Materials
,”
J. Electroceram.
,
2
(
4
), pp.
257
272
.
23.
Standard ASTM, D6671/D6671M
,
2006
,
Standard Test Method for Mixed Mode I–Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites
,
ASTM International
,
West Conshohocken, PA
, p.
10
.
24.
Bae
,
H.
,
Kang
,
M.
,
Woo
,
K.
,
Kim
,
I.-G.
, and
In
,
K.
,
2019
, “
Test and Analysis of Modes I, II and Mixed-Mode I/II Delamination for Carbon/Epoxy Composite Laminates
,”
Int. J. Aeronaut. Space Sci.
,
20
(
3
), pp.
636
652
.
25.
Ryu
,
D.
, and
Castano
,
N.
,
2018
, “
Multivariate Characterization of Light Emission From ZnS:Cu-PDMS Self-Sensing Composites Under Cyclic Tensile Strains
,”
IEEE Sens. Lett.
,
2
(
2
), pp.
1
4
.
26.
Ryu
,
D.
,
Loh
,
K. J.
, and
Yaghmaie
,
F.
,
2011
, “
Validation of Photocurrent-Based Strain Sensing Using a P3HT-Based Nanocomposite
,”
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2011
,
San Diego, CA
,
Apr. 13
.
27.
Li
,
L.
,
Zhang
,
F.
,
Wang
,
J.
,
An
,
Q.
,
Sun
,
Q.
,
Wang
,
W.
,
Zhang
,
J.
, and
Teng
,
F.
,
2015
, “
Achieving EQE of 16,700% in P3HT: PC71BM Based Photodetectors by Trap-Assisted Photomultiplication
,”
Sci. Rep.
,
5
(
1
), p.
9181
.
28.
Kuo
,
C.-G.
,
Chen
,
J.-H.
,
Chao
,
Y.-C.
, and
Chen
,
P.-L.
,
2017
, “
Fabrication of a P3HT-ZnO Nanowires Gas Sensor Detecting Ammonia Gas
,”
Sensors
,
18
(
1
), p.
37
.
29.
Pulliam
,
E.
,
Hoover
,
G.
,
Tiparti
,
D
, and
Ryu
,
D
,
2017
, “
Development of Self-Powered Strain Sensor Using Mechano-Luminescent ZnS:Cu and Mechano-Optoelectronic P3HT
,”
Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2017
,
Portland, Oregon USA
,
April 12,2017
.
30.
Ryu
,
D.
, and
Loh
,
K. J.
,
2012
, “
Self-Sensing Photoactive Thin Films for Monitoring Space Structures
,”
ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
Stone Mountain, GA
,
Sept. 19–21
, pp.
679
686
.
31.
Krishnan
,
S.
,
Van der Walt
,
H.
,
Venkatesh
,
V.
, and
Sundaresan
,
V. B.
,
2017
, “
Dynamic Characterization of Elastico-Mechanoluminescence Towards Structural Health Monitoring
,”
J. Intell. Mater. Syst. Struct.
,
28
(
17
), pp.
2458
2464
.
32.
Yao
,
L.
,
Alderliesten
,
R. C.
,
Zhao
,
M.
, and
Benedictus
,
R.
,
2014
, “
Discussion on the Use of the Strain Energy Release Rate for Fatigue Delamination Characterization
,”
Compos. Part A: Appl. Sci. Manuf.
,
66
, pp.
65
72
.
33.
Brunner
,
A. J.
,
Stelzer
,
S.
,
Pinter
,
G.
, and
Terrasi
,
G. P.
,
2016
, “
Cyclic Fatigue Delamination of Carbon Fiber-Reinforced Polymer-Matrix Composites: Data Analysis and Design Considerations
,”
Int. J. Fatigue
,
83
, pp.
293
299
.
34.
Ekhtiyari
,
A.
,
Alderliesten
,
R.
, and
Shokrieh
,
M. M.
,
2021
, “
Loading Rate Dependency of Strain Energy Release Rate in Mode I Delamination of Composite Laminates
,”
Theor. Appl. Fract. Mech.
,
112
, p.
102894
.
35.
Stelzer
,
S.
,
Brunner
,
A. J.
,
Argüelles
,
A.
,
Murphy
,
N.
, and
Pinter
,
G.
,
2012
, “
Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Development of a Standardized Test Procedure
,”
Compos. Sci. Technol.
,
72
(
10
), pp.
1102
1107
.
36.
Allegri
,
G.
,
Wisnom
,
M. R.
, and
Hallett
,
S.
,
2013
, “
A New Semi-Empirical Law for Variable Stress-Ratio and Mixed-Mode Fatigue Delamination Growth
,”
Compos. Part A: Appl. Sci. Manuf.
,
48
, pp.
192
200
.
37.
Hojo
,
M.
,
Nakashima
,
K.
,
Kusaka
,
T.
,
Tanaka
,
M.
,
Adachi
,
T.
,
Fukuoka
,
T.
, and
Ishibashi
,
M.
,
2010
, “
Mode I Fatigue Delamination of Zanchor-Reinforced CF/Epoxy Laminates
,”
Int. J. Fatigue
,
32
(
1
), pp.
37
45
.
38.
Abot
,
J. L.
,
Song
,
Y.
,
Vatsavaya
,
M. S.
,
Medikonda
,
S.
,
Kier
,
Z.
,
Jayasinghe
,
C.
,
Rooy
,
N.
,
Shanov
,
V. N.
, and
Schulz
,
M. J.
,
2010
, “
Delamination Detection With Carbon Nanotube Thread in Self-Sensing Composite Materials
,”
Compos. Sci. Technol.
,
70
(
7
), pp.
1113
1119
.
You do not currently have access to this content.