Abstract

Debonding between stiffener and base plate is a very common type of damage in stiffened panels. Numerous efforts have been made for debonding assessment in the stiffened panel structure using guided wave-based techniques. However, these studies are limited to the detection of through-the-flange-width debonding (i.e., full debonding). This paper attempts to develop a methodology for the detection and assessment of early-stage debonding (i.e., partial debonding) in the stiffened panel using machine learning (ML) algorithms. An experimentally validated finite element (FE) simulation model is used to create an initial guided wave dataset containing several debonding scenarios. This dataset is processed through a data augmentation process, followed by feature extraction involving higher harmonics of guided waves. Thereafter, the extracted feature is compressed using a deep autoencoder model. The compressed feature is used for hyperparameter tuning, training, and testing of several supervised ML algorithms, and their performance in the identification of debonding zone and prediction of its size is analyzed. Finally, the trained ML algorithms are tested with experimental data showing that the ML algorithms closely predict the zones of debonding and their sizes. The proposed methodology is an advancement in debonding assessment, specifically addressing early-stage debonding in stiffened panels.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ghoshal
,
A.
,
Kim
,
H. S.
,
Chattopadhyay
,
A.
, and
Prosser
,
W. H.
,
2005
, “
Effect of Delamination on Transient History of Smart Composite Plates
,”
Finite Elem. Anal. Des.
,
41
(
9
), pp.
850
874
.
2.
Soleimanpour
,
R.
, and
Ng
,
C. T.
,
2017
, “
Locating Delaminations in Laminated Composite Beams Using Nonlinear Guided Waves
,”
Eng. Struct.
,
131
, pp.
207
219
.
3.
Yang
,
X.
,
Zhan
,
L.
,
Zhao
,
X.
, and
Jiang
,
C.
,
2020
, “
Analysis of Porosity and Mechanical Behavior of Composite T-Joints Produced by Random Vibration-Assisted Vacuum Processing
,”
Iran. Polym. J.
,
29
(
9
), pp.
759
770
.
4.
Fiborek
,
P.
, and
Kudela
,
P.
,
2021
, “
Model-Assisted Guided-Wave-Based Approach for Disbond Detection and Size Estimation in Honeycomb Sandwich Composites
,”
Sensors (Basel)
,
21
(
24
), p.
8183
.
5.
Mustapha
,
S.
, and
Ye
,
L.
,
2015
, “
Propagation Behaviour of Guided Waves in Tapered Sandwich Structures and Debonding Identification Using Time Reversal
,”
Wave Motion
,
57
, pp.
154
170
.
6.
Sikdar
,
S.
,
Fiborek
,
P.
,
Kudela
,
P.
,
Banerjee
,
S.
, and
Ostachowicz
,
W.
,
2018
, “
Effects of Debonding on Lamb Wave Propagation in a Bonded Composite Structure Under Variable Temperature Conditions
,”
Smart Mater. Struct.
,
28
(
1
), p.
15021
.
7.
Yelve
,
N. P.
,
Mitra
,
M.
, and
Mujumdar
,
P. M.
,
2015
, “
Detection of Stiffener Disbonding in a Stiffened Aluminium Panel Using Nonlinear Lamb Wave
,”
Appl. Acoust.
,
89
, pp.
267
272
.
8.
Mandal
,
D. D.
, and
Banerjee
,
S.
,
2019
, “
Identification of Breathing Type Disbonds in Stiffened Panels Using Non-Linear Lamb Waves and Built-In Circular PWT Array
,”
Mech. Syst. Signal Process.
,
117
, pp.
33
51
.
9.
Sikdar
,
S.
,
Van Paepegem
,
W.
,
Ostachowicz
,
W.
, and
Kersemans
,
M.
,
2020
, “
Nonlinear Elastic Wave Propagation and Breathing-Debond Identification in a Smart Composite Structure
,”
Composites, Part B
,
200
, p.
108304
.
10.
Eckstein
,
B.
,
Bonet
,
M. M.
,
Bach
,
M.
, and
Fritzen
,
C. P.
,
2018
, “
Lamb Wave Interaction at Delamination and Debondings Due to Impact Damage in Complex Stiffened CFRP Structures
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
1
(
3
), p.
031003
.
11.
Yelve
,
N. P.
,
Mitra
,
M.
, and
Mujumdar
,
P. M.
,
2017
, “
Detection of Delamination in Composite Laminates Using Lamb Wave Based Nonlinear Method
,”
Compos. Struct.
,
159
, pp.
257
266
.
12.
Soleimanpour
,
R.
,
Ng
,
C. T.
, and
Wang
,
C. H.
,
2017
, “
Higher Harmonic Generation of Guided Waves at Delaminations in Laminated Composite Beams
,”
Struct. Health Monit.
,
16
(
4
), pp.
400
417
.
13.
Solodov
,
I. Y.
,
1998
, “
Ultrasonics of Non-Linear Contacts: Propagation, Reflection and NDE-Applications
,”
Ultrasonics
,
36
(
1
), pp.
383
390
.
14.
Singh
,
A. K.
,
Tan
,
V. B. C.
,
Tay
,
T. E.
, and
Lee
,
H. P.
,
2022
, “
Numerical Investigations Into Nonlinear Vibro-Ultrasonics and Surface Vibration Comparison Method for Detection of Defects in a Composite Laminate
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
5
(
2
), p.
021007
.
15.
Gangwar
,
A. S.
,
Agrawal
,
Y.
, and
Joglekar
,
D. M.
,
2021
, “
Nonlinear Interactions of Lamb Waves With a Delamination in Composite Laminates
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
4
(
3
), p.
031008
.
16.
Kumar
,
A.
,
Guha
,
A.
, and
Banerjee
,
S.
,
2021
, “
A Simplified Actuator-Sensor Arrangement for Detection of Debonding in Stiffened Panel Based on Non-Linear Lamb Wave
,”
“Advances in Acoustics, Noise and Vibration—2021” Proceedings of the 27th International Congress on Sound and Vibration, ICSV 2021
,
Prague, Czech Republic
,
July 11–16
, pp.
1
8
.
17.
Mitra
,
M.
, and
Gopalakrishnan
,
S.
,
2016
, “
Guided Wave Based Structural Health Monitoring: A Review
,”
Smart. Mater. Struct.
,
25
(
5
), p.
53001
.
18.
Ng
,
C. T.
,
2014
, “
On the Selection of Advanced Signal Processing Techniques for Guided Wave Damage Identification Using a Statistical Approach
,”
Eng. Struct.
,
67
, pp.
50
60
.
19.
Khan
,
A.
,
Kim
,
N.
,
Shin
,
J. K.
,
Kim
,
H. S.
, and
Youn
,
B. D.
,
2019
, “
Damage Assessment of Smart Composite Structures via Machine Learning: A Review
,”
JMST Adv.
,
1
(
1
), pp.
107
124
.
20.
Yang
,
Z.
,
Yang
,
H.
,
Tian
,
T.
,
Deng
,
D.
,
Hu
,
M.
,
Ma
,
J.
,
Gao
,
D.
, et al
,
2023
, “
A Review in Guided-Ultrasonic-Wave-Based Structural Health Monitoring: From Fundamental Theory to Machine Learning Techniques
,”
Ultrasonics
,
133
, p.
107014
.
21.
Eltouny
,
K.
,
Gomaa
,
M.
, and
Liang
,
X.
,
2023
, “
Unsupervised Learning Methods for Data-Driven Vibration-Based Structural Health Monitoring: A Review
,”
Sensors
,
23
(
6
), p.
3290
.
22.
Huang
,
M.
,
Zhao
,
W.
,
Gu
,
J.
, and
Lei
,
Y.
,
2020
, “
Damage Identification of a Steel Frame Based on Integration of Time Series and Neural Network Under Varying Temperatures. Li D, Editor
,”
Adv. Civ. Eng.
,
2020
, p.
4284381
.
23.
Sawant
,
S.
,
Patil
,
S.
,
Thalapil
,
J.
,
Banerjee
,
S.
, and
Tallur
,
S.
,
2022
, “
Temperature Variation Compensated Damage Classification and Localisation in Ultrasonic Guided Wave SHM Using Self-Learnt Features and Gaussian Mixture Models
,”
Smart. Mater. Struct.
,
31
(
5
), p.
055008
.
24.
Khan
,
A.
,
Raouf
,
I.
,
Noh
,
Y. R.
,
Lee
,
D.
,
Sohn
,
J. W.
, and
Kim
,
H. S.
,
2022
, “
Autonomous Assessment of Delamination in Laminated Composites Using Deep Learning and Data Augmentation
,”
Compos. Struct.
,
290
, p.
115502
.
25.
Dabetwar
,
S.
,
Ekwaro-Osire
,
S.
, and
Dias
,
J. P.
,
2022
, “
Fatigue Damage Diagnostics of Composites Using Data Fusion and Data Augmentation With Deep Neural Networks
,”
ASME J. Nondestruct. Eval. Diagn. Progn. Eng. Syst.
,
5
(
2
), p.
021004
.
26.
Mahajan
,
H.
, and
Banerjee
,
S.
,
2022
, “
A Machine Learning Framework for Guided Wave-Based Damage Detection of Rail Head Using Surface-Bonded Piezo-Electric Wafer Transducers
,”
Mach. Learn. Appl.
,
7
, p.
100216
.
27.
Rai
,
A.
, and
Mitra
,
M.
,
2021
, “
A Hybrid Physics-Assisted Machine-Learning-Based Damage Detection Using Lamb Wave
,”
Sadhana
,
46
(
2
), p.
46
. doi.org/10.1007/s12046-021-01582-8
28.
Rautela
,
M.
,
Senthilnath
,
J.
,
Moll
,
J.
, and
Gopalakrishnan
,
S.
,
2021
, “
Combined Two-Level Damage Identification Strategy Using Ultrasonic Guided Waves and Physical Knowledge Assisted Machine Learning
,”
Ultrasonics
,
115
, p.
106451
.
29.
Mienye
,
I. D.
, and
Sun
,
Y.
,
2022
, “
A Survey of Ensemble Learning: Concepts, Algorithms, Applications, and Prospects
,”
IEEE Access
,
10
, pp.
99129
99149
.
30.
Kumar
,
A.
,
Guha
,
A.
, and
Banerjee
,
S.
,
2021
, “
Improving Prediction Accuracy for Debonding Quantification in Stiffened Plate by Meta-Learning Model
,”
Lect. Notes Netw. Syst.
,
150
, pp.
51
63
.
31.
Bocchini
,
P.
,
Marzani
,
A.
, and
Viola
,
E.
,
2011
, “
Graphical User Interface for Guided Acoustic Waves
,”
J. Comput. Civil Eng.
,
25
(
3
), pp.
202
210
.
32.
Biwa
,
S.
,
Nakajima
,
S.
, and
Ohno
,
N.
,
2004
, “
On the Acoustic Nonlinearity of Solid-Solid Contact With Pressure-Dependent Interface Stiffness
,”
ASME J. Appl. Mech.
,
71
(
4
), pp.
508
515
.
33.
Jhang
,
K. Y.
,
2009
, “
Nonlinear Ultrasonic Techniques for Nondestructive Assessment of Micro Damage in Material: A Review
,”
Int. J. Precis. Eng. Manuf.
,
10
(
1
), pp.
123
135
.
34.
Matlack
,
K. H.
,
Kim
,
J. Y.
,
Jacobs
,
L. J.
, and
Qu
,
J.
,
2015
, “
Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals
,”
J. Nondestr. Eval.
,
273
, p.
34
.
35.
Den Abeele
,
K. E. A. V.
,
Carmeliet
,
J.
,
Ten Cate
,
J. A.
, and
Johnson
,
P. A.
,
2000
, “
Nonlinear Elastic Wave Spectroscopy (NEWS) Techniques to Discern Material Damage, Part II: Single-Mode Nonlinear Resonance Acoustic Spectroscopy
,”
Res. Nondestr. Eval.
,
12
(
1
), pp.
31
42
.
36.
Ostrovsky
,
L. A.
, and
Johnson
,
P. A.
,
2001
, “
Dynamic Nonlinear Elasticity in Geomaterials
,”
La Riv. del Nuovo Cim.
,
24
(
7
), pp.
1
46
.
37.
Lee
,
H.
,
Lim
,
H. J.
,
Skinner
,
T.
,
Chattopadhyay
,
A.
, and
Hall
,
A.
,
2021
, “
Automated Fatigue Damage Detection and Classification Technique for Composite Structures Using Lamb Waves and Deep Autoencoder
,”
Mech. Syst. Signal Process.
,
163
, p.
108148
.
38.
Rautela
,
M.
,
Senthilnath
,
J.
,
Monaco
,
E.
, and
Gopalakrishnan
,
S.
,
2022
, “
Delamination Prediction in Composite Panels Using Unsupervised-Feature Learning Methods With Wavelet-Enhanced Guided Wave Representations
,”
Compos. Struct.
,
291
, p.
115579
.
39.
Vincent
,
P.
, and
Larochelle
,
H.
,
2008
, “
Extracting and Composing Robust Features With Denoising Autoencoders
,”
25th International Conference on Machine Learning
,
New York
,
July 5–9
, pp.
1096
1103
.
40.
Ince
,
T.
,
Kiranyaz
,
S.
,
Eren
,
L.
,
Askar
,
M.
, and
Gabbouj
,
M.
,
2016
, “
Real-Time Motor Fault Detection by 1-D Convolutional Neural Networks
,”
IEEE Trans. Ind. Electron.
,
63
(
11
), pp.
7067
7075
.
41.
Janssens
,
O.
,
Slavkovikj
,
V.
,
Vervisch
,
B.
,
Stockman
,
K.
,
Loccufier
,
M.
,
Verstockt
,
S.
, et al
,
2016
, “
Convolutional Neural Network Based Fault Detection for Rotating Machinery
,”
J. Sound Vib.
,
377
, pp.
331
345
.
42.
Abdeljaber
,
O.
,
Avci
,
O.
,
Kiranyaz
,
S.
,
Gabbouj
,
M.
, and
Inman
,
D. J.
,
2017
, “
Real-Time Vibration-Based Structural Damage Detection Using One-Dimensional Convolutional Neural Networks
,”
J. Sound. Vib.
,
388
, pp.
154
170
.
43.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
44.
Cortes
,
C.
, and
Vapnik
,
V.
,
1995
, “
Support-Vector Networks
,”
Mach. Learn.
,
20
(
3
), pp.
273
297
.
45.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
46.
Cover
,
T.
, and
Hart
,
P.
,
1967
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inf. Theory
,
13
(
1
), pp.
21
27
.
47.
Wolpert
,
D. H.
,
1992
, “
Stacked Generalization
,”
Neural Networks
,
5
(
2
), pp.
241
259
.
You do not currently have access to this content.