Abstract

The effectiveness of the signal energy–based acoustic source localization approach in practical applications has yet to be established. This is addressed herein by conducting an experimental study on a 500 mm × 500 mm carbon fiber–reinforced polymer plate and generating artificial acoustic events in the plate. Upon acquiring the propagating wave signals at several well-scattered sensors, the signal energy–based approach is applied, and the accuracy of the source localization results is noted. Seven experiments are performed with varying source locations, sensor-plate bonding, and excitation types. This approach has performed well for five experiments with source localization errors below 15 mm. The remaining two experiments where the acoustic sources are relatively close to the plate edges compared to the other experiments have, however, produced large localization errors, indicating a scope of improvement in the approach to encompass all situations.

References

1.
Kundu
,
T.
,
2014
, “
Acoustic Source Localization
,”
Ultrasonics
,
54
(
1
), pp.
25
38
.
2.
Hassan
,
F.
,
Mahmood
,
A. K. B.
,
Yahya
,
N.
,
Saboor
,
A.
,
Abbas
,
M. Z.
,
Khan
,
Z.
, and
Rimsan
,
M.
,
2021
, “
State-of-the-Art Review on the Acoustic Emission Source Localization Techniques
,”
IEEE Access
,
9
, pp.
101246
101266
.
3.
Tobias
,
A.
,
1976
, “
Acoustic-Emission Source Location in Two Dimensions by an Array of Three Sensors
,”
Nondestruct. Test
,
9
(
1
), pp.
9
12
.
4.
Sen
,
N.
,
2023
, “
On Propagation of Material Property Uncertainty Through Signal Energy-Based Acoustic Source Localization in an Orthotropic Plate
,”
ASME J. Nondestruct. Eval.
,
6
(
3
), p.
031001
.
5.
Ciampa
,
F.
, and
Meo
,
M.
,
2010
, “
A New Algorithm for Acoustic Emission Localization and Flexural Group Velocity Determination in Anisotropic Structures
,”
Compos. A: Appl. Sci. Manuf.
,
41
(
12
), pp.
1777
1786
.
6.
Seydel
,
R.
, and
Chang
,
F. K.
,
2001
, “
Impact Identification of Stiffened Composite Panels: I. System Development
,”
Smart Mater. Struct.
,
10
(
2
), pp.
354
369
.
7.
Meo
,
M.
,
Zumpano
,
G.
,
Piggott
,
M.
, and
Marengo
,
G.
,
2005
, “
Impact Identification on a Sandwich Plate From Wave Propagation Responses
,”
Compos. Struct.
,
71
(
3–4
), pp.
302
306
.
8.
Kundu
,
T.
,
Das
,
S.
,
Martin
,
S. A.
, and
Jata
,
K. V.
,
2008
, “
Locating Point of Impact in Anisotropic Fiber Reinforced Composite Plates
,”
Ultrasonics
,
48
(
3
), pp.
193
201
.
9.
Koabaz
,
M.
,
Hajzargarbashi
,
T.
,
Kundu
,
T.
, and
Deschamps
,
M.
,
2012
, “
Locating the Acoustic Source in an Anisotropic Plate
,”
Struct. Health Monit.
,
11
(
3
), pp.
315
323
.
10.
Kundu
,
T.
,
Nakatani
,
H.
, and
Takeda
,
N.
,
2012
, “
Acoustic Source Localization in Anisotropic Plates
,”
Ultrasonics
,
52
(
6
), pp.
740
746
.
11.
De Simone
,
M. E.
,
Ciampa
,
F.
,
Boccardi
,
S.
, and
Meo
,
M.
,
2017
, “
Impact Source Localisation in Aerospace Composite Structures
,”
Smart Mater. Struct.
,
26
(
12
), p.
125026
.
12.
Hoseini Sabzevari
,
S. A.
, and
Moavenian
,
M.
,
2017
, “
Sound Localization in an Anisotropic Plate Using Electret Microphones
,”
Ultrasonics
,
73
, pp.
114
124
.
13.
Park
,
W. H.
,
Packo
,
P.
, and
Kundu
,
T.
,
2017
, “
Acoustic Source Localization in an Anisotropic Plate Without Knowing Its Material Properties—A New Approach
,”
Ultrasonics
,
79
, pp.
9
17
.
14.
Yin
,
S.
,
Cui
,
Z.
, and
Kundu
,
T.
,
2018
, “
Acoustic Source Localization in Anisotropic Plates With “Z” Shaped Sensor Clusters
,”
Ultrasonics
,
84
, pp.
34
37
.
15.
Sen
,
N.
, and
Kundu
,
T.
,
2018
, “
A New Wave Front Shape-Based Approach for Acoustic Source Localization in an Anisotropic Plate Without Knowing Its Material Properties
,”
Ultrasonics
,
87
, pp.
20
32
.
16.
Jang
,
B. W.
, and
Kim
,
C. G.
,
2019
, “
Impact Localization of Composite Stiffened Panel With Triangulation Method Using Normalized Magnitudes of Fiber Optic Sensor Signals
,”
Compos. Struct.
,
211
, pp.
522
529
.
17.
Sen
,
N.
, and
Kundu
,
T.
,
2020
, “
Acoustic Source Localization in a Highly Anisotropic Plate With Unknown Orientation of Its Axes of Symmetry and Material Properties With Numerical Verification
,”
Ultrasonics
,
100
, p.
105977
.
18.
Sen
,
N.
,
Gawroński
,
M.
,
Packo
,
P.
,
Uhl
,
T.
, and
Kundu
,
T.
,
2021
, “
Square-Shaped Sensor Clusters for Acoustic Source Localization in Anisotropic Plates by Wave Front Shape-Based Approach
,”
Mech. Syst. Signal Process.
,
153
, p.
107489
.
19.
Nakatani
,
H.
,
Hajzargarbashi
,
T.
,
Ito
,
K.
,
Kundu
,
T.
, and
Takeda
,
N.
,
2013
, “
Locating Point of Impact on an Anisotropic Cylindrical Surface Using Acoustic Beamforming Technique
,”
Key Eng. Mater.
,
558
, pp.
331
340
.
20.
Xiao
,
D.
,
He
,
T.
,
Pan
,
Q.
,
Liu
,
X.
,
Wang
,
J.
, and
Shan
,
Y.
,
2014
, “
A Novel Acoustic Emission Beamforming Method With Two Uniform Linear Arrays on Plate-Like Structures
,”
Ultrasonics
,
54
(
2
), pp.
737
745
.
21.
Ebrahimkhanlou
,
A.
, and
Salamone
,
S.
,
2017
, “
Acoustic Emission Source Localization in Thin Metallic Plates: A Single-Sensor Approach Based on Multimodal Edge Reflections
,”
Ultrasonics
,
78
, pp.
134
145
.
22.
Sen
,
N.
, and
Kundu
,
T.
,
2022
, “
A New Signal Energy-Based Approach to Acoustic Source Localization in Orthotropic Plates: A Numerical Study
,”
Mech. Syst. Signal Process.
,
171
, p.
108843
.
23.
Han
,
L.
,
Wang
,
X. D.
, and
Sun
,
Y.
,
2008
, “
The Effect of Bonding Layer Properties on the Dynamic Behaviour of Surface-Bonded Piezoelectric Sensors
,”
Int. J. Solids Struct.
,
45
(
21
), pp.
5599
5612
.
You do not currently have access to this content.