Abstract

A novel analytical investigation of longitudinal wave propagation in an elastic cylinder embedded in a viscoelastic fluid is proposed. The Maxwell model is used to describe the viscoelastic fluid behavior. With appropriate boundary conditions, a complex dispersion equation of longitudinal waves has been established. The aim of this paper is to study the effect of the fluid rheological properties on the longitudinal wave characteristics (attenuation and velocity). It is shown that the attenuation is the sum of a viscous and nonviscous component. The viscosity-induced attenuation is predominant at low frequencies. On the other hand, the effect of the liquid amount and elastic cylinder radius on the attenuation and velocity are studied. A critical normalized liquid thickness is highlighted. Beyond this critical value, the influence of the outer boundary condition can be neglected. At last, among other interesting phenomena, it is highlighted that if the Deborah number increases, the attenuation decreases. This variation characterizes a stiffening of the viscoelastic medium. In addition, the obtained results show that the viscosity measurement should be performed at low frequencies using a small elastic cylinder radius. Accordingly, these investigations are novel and can be applied in geophysics, the food industry, medicine, nondestructive testing of materials, and the design and development of fluid sensors.

References

1.
Chree
,
C.
,
1886
, “
Longitudinal Vibrations of a Circular Bar
,”
Q. J. Pure Appl. Math.
,
21
, pp.
287
298
.
2.
Chree
,
C.
,
1889
, “
The Equations of an Isotropic Elastic Solid in Polar and Cylindrical Coordinates. Their Solution and Application
,”
Trans. Cambridge Philos. Soc.
,
14
, pp.
250
309
.
3.
Mirsky
,
I.
,
1965
, “
Wave Propagation in Transversely Isotropic Circular Cylinders Part 1: Theory
,”
J. Acoust. Soc. Am.
,
37
(
6
), pp.
1016
1021
.
4.
Nagy
,
P. B.
,
1995
, “
Longitudinal Guided Wave Propagation in a Transversely Isotropic Rod Immersed in Fluid
,”
J. Acoust. Soc. Am.
,
98
(
1
), pp.
454
457
.
5.
Ahmad
,
F.
,
2001
, “
Guided Waves in a Transversely Isotropic Cylinder Immersed in a Fluid
,”
J. Acoust. Soc. Am.
,
109
(
3
), pp.
886
890
.
6.
Nagy
,
P. B.
, and
Kent
,
R. M.
,
1995
, “
Ultrasonic Assessment of Poisson’s Ratio in Thin Rods
,”
J. Acoust. Soc. Am.
,
98
(
5
), pp.
2694
2701
.
7.
Nagy
,
P. B.
,
1994
, “
Leaky Guided Wave Propagation Along Imperfectly Bonded Fibers in Composite Materials
,”
J. Nondestruct. Eval.
,
13
(
3
), pp.
137
145
.
8.
Benatar
,
A.
,
Rittel
,
D.
, and
Yarin
,
A. L.
,
2003
, “
Theoretical and Experimental Analysis of Longitudinal Wave Propagation in Cylindrical Viscoelastic Rods
,”
J. Mech. Phys. Solids
,
51
(
8
), pp.
1413
1431
.
9.
Akbarov
,
S. D.
,
Kocal
,
T.
, and
Kepceler
,
T.
,
2016
, “
On the Dispersion of the Axisymmetric Longitudinal Wave Propagating in a Bilayered Hollow Cylinder Made of Viscoelastic Materials
,”
Int. J. Solids Struct.
,
100–101
, pp.
195
210
.
10.
Akbarov
,
S. D.
, and
Bagirov
,
E. T.
,
2019
, “
Axisymmetric Longitudinal Wave Dispersion in a Bi-Layered Circular Cylinder With Inhomogeneous Initial Stresses
,”
J. Sound Vib.
,
450
, pp.
1
27
.
11.
Saravanan
,
T. J.
,
2021
, “
Guided Ultrasonic Wave-Based Investigation on the Transient Response in an Axisymmetric Viscoelastic Cylindrical Waveguide
,”
Ultrasonics
,
117
, p.
106543
.
12.
Zhao
,
H.
, and
Gary
,
G.
,
1995
, “
A Three Dimensional Analytical Solution of the Longitudinal Wave Propagation in an Infinite Linear Viscoelastic Cylindrical bar. Application to Experimental Techniques
,”
J. Mech. Phys. Solids
,
43
(
8
), pp.
1335
1348
.
13.
Ahonsi
,
B.
,
Harrigan
,
J. J.
, and
Aleyaasin
,
M.
,
2012
, “
On the Propagation Coefficient of Longitudinal Stress Waves in Viscoelastic Bars
,”
Int. J. Impact Eng.
,
45
, pp.
39
51
.
14.
Alleyne
,
D. N.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
1998
, “
The Reflection of Guided Waves From Circumferential Notches in Pipes
,”
ASME J. Appl. Mech.
,
65
(
3
), pp.
635
641
.
15.
Lowe
,
M. J. S.
,
Alleyne
,
D. N.
, and
Cawley
,
P.
,
1998
, “
Defect Detection in Pipes Using Guided Waves
,”
Ultrasonics
,
36
(
1–5
), pp.
147
154
.
16.
Rose
,
J. L.
,
2002
, “
A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential
,”
ASME J. Pressure Vessel Technol.
,
124
(
3
), pp.
273
282
.
17.
Lowe
,
P. S.
,
Sanderson
,
R.
,
Pedram
,
S. K.
,
Boulgouris
,
N. V.
, and
Mudge
,
P.
,
2015
, “
Inspection of Pipelines Using the First Longitudinal Guided Wave Mode
,”
Phys. Proc.
,
70
, pp.
338
342
.
18.
Alleyne
,
D. N.
,
Vogt
,
T.
, and
Cawley
,
P.
,
2018
, “
The Choice of Torsional or Longitudinal Excitation in Guided Wave Pipe Inspection
,”
Proceedings of the 5th Iranian International NDT Conference
,
Tehran, Iran
,
Nov. 4–5
.
19.
Achenbach
,
J. D.
,
1984
,
Wave Propagation in Elastic Solids
,
North-Holland Publishing Co.
,
New York
.
20.
Nayfeh
,
A. H.
,
1995
,
Wave Propagation in Layered Anisotropic Media With Applications to Composites
,
Elsevier Science B.V.
,
North-Holland, Netherlands
.
21.
Lowe
,
M. J. S.
,
1995
, “
Matrix Techniques for Modeling Ultrasonic Waves in Multilayered Media
,”
IEEE Trans. Ultrasonics, Ferroelectr., Freq. Control
,
42
(
4
), pp.
1202
1209
.
22.
Rose
,
J. L.
,
1999
,
Ultrasonic Waves in Solid Media
,
Cambridge University Press
,
Cambridge
.
23.
Mnassri
,
I.
, and
El Baroudi
,
A.
,
2017
, “
Elasto-Acoustic Coupling Between Two Circular Cylinders and Dense Fluid
,”
Int. J. Appl. Mech.
,
9
(
5
), p.
1750062
.
24.
Ma
,
J.
,
Lowe
,
M. J. S.
, and
Simonetti
,
F.
,
2007
, “
Measurement of the Properties of Fluids Inside Pipes Using Guided Longitudinal Waves
,”
IEEE Trans. Ultrasonics, Ferroelectr., Freq. Control
,
54
(
3
), pp.
647
658
.
25.
Laux
,
D.
,
Gibert
,
O.
,
Ferrandis
,
J.-Y.
,
Rosenkrantz
,
E.
,
Mograne
,
M. A.
, and
Prades
,
A.
,
2018
, “
In Pipe Coconut Water Rheological Characterization With Ultrasonic Waves
,”
J. Food Eng.
,
235
, pp.
59
63
.
26.
Harrold
,
R. T.
, and
Sanjana
,
Z. N.
,
1986
, “
Acoustic Waveguide Monitoring of the Cure and Structural Integrity of Composite Materials
,”
Polym. Eng. Sci.
,
26
(
5
), pp.
367
372
.
27.
Harrold
,
R. T.
, and
Sanjana
,
Z. N.
,
1988
, “
Acoustic Characterization of Curing Processes Using Waveguides Embedded in Polymers
,”
Rev. Prog. Quant. Nondestruct. Eval.
, pp.
1549
1553
.
28.
Harrold
,
R. T.
, and
Sanjana
,
Z. N.
,
1991
, “
Cure Monitoring of Composites Using Multiple Acoustic Waveguides
,”
Rev. Prog. Quant. Nondestruct. Eval.
, pp.
1267
1272
.
29.
Vogt
,
T.
,
Lowe
,
M. J. S.
, and
Cawley
,
P.
,
2001
, “
Cure Monitoring Using Ultrasonic Guided Waves in Wires
,”
AIP Conf. Proc.
,
557
(
1
), pp.
1642
1649
.
30.
Nagy
,
P. B.
, and
Nayfeh
,
A. H.
,
1996
, “
Viscosity-Induced Attenuation of Longitudinal Guided Waves in Fluid-Loaded Rods
,”
J. Acoust. Soc. Am.
,
100
(
3
), pp.
1501
1508
.
31.
Vogt
,
T. K.
,
Lowe
,
J. S.
, and
Cawley
,
P.
,
2004
, “
Measurement of the Material Properties of Viscous Liquids Using Ultrasonic Guided Waves
,”
IEEE Trans. Ultrasonics, Ferroelectr., Freq. Control
,
51
(
6
), pp.
737
747
.
32.
El Baroudi
,
A.
, and
Razafimahery
,
F.
,
2013
, “
Three-Dimensional Investigation of the Stokes Eigenmodes in Hollow Circular Cylinder
,”
Adv. Acoust. Vib.
, p.
857821
.
33.
Mnassri
,
I.
, and
El Baroudi
,
A.
,
2017
, “
Vibrational Frequency Analysis of Finite Elastic Tube Filled With Compressible Viscous Fluid
,”
Acta Mech. Solida Sin.
,
30
(
4
), pp.
435
444
.
34.
Morse
,
M.
, and
Feshbach
,
H.
,
1946
,
Methods of Theoretical Physics Part II
,
McGraw-Hill
,
New York
.
35.
Galstyan
,
V.
,
Pak
,
O. S.
, and
Stone
,
H. A.
,
2015
, “
A Note on the Breathing Mode of an Elastic Sphere in Newtonian and Complex Fluids
,”
Phys. Fluids
,
27
(
3
), p.
032001
.
36.
Vogt
,
K.
,
2002
,
Determination of Material Properties Using Guided Waves
,
Imperial College of Science, Technology and Medicine, University of London
,
London, UK
.
You do not currently have access to this content.