Abstract

This article addresses the classification of fatigue crack length using artificial intelligence (AI) applied to acoustic emission (AE) signals. The AE signals were collected during fatigue testing of two specimen types. One specimen type had a 1-mm hole for crack initiation. The other specimen type had a 150-µm wide slit of various lengths. Fatigue testing was performed under stress intensity factor control to moderate crack advancement. The slit specimen produced AE signals only from crack advancement at the slit tips, whereas the 1-mm hole specimens produced AE signals from both crack tip advancement and crack rubbing or clapping. The AE signals were captured with a piezoelectric wafer active sensor (PWAS) array connected to MISTRAS instrumentation and aewin software. The collected AE signals were preprocessed using time-of-flight filtering and denoising. Choi Williams transform converted time domain AE signals into spectrograms. To apply machine learning, the spectrogram images were used as input data for the training, validation, and testing of a GoogLeNet convolutional neural network (CNN). The CNN was trained to sort the AE signals into crack length classes. CNN performance enhancements, including synthetic data generation and class balancing, were developed. A three-class example with crack lengths of (i) 10–12 mm, (ii) 12–14 mm, and (iii) 14–16 mm is provided. Our AI approach was able to classify the AE signals into these three classes with 91% accuracy, thus proving that the AE signals contain sufficient information for crack estimation using an AI-enabled approach.

References

1.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
534
.
2.
Sikorski
,
W.
,
2013
,
Acoustic Emission Research and Applications
,
InTech
,
London, UK
. DOI: 10.5772/50270
3.
Sause
,
M. G. R.
, and
Jasiuniene
,
E.
,
2022
,
Structural Health Monitoring Damage Detection Systems for Aerospace
,
Springer Open
.
4.
Mitchell
,
J. R.
,
Egle
,
D. M.
, and
Appl
,
F. J.
,
1973
, “
Detecting Fatigue Cracks With Acoustic Emission
,” Proceedings of the Oklahoma Academy of Science.
5.
Hamstad
,
M. A.
, and
Mukherjee
,
A. K.
,
1978
, “
Comparison of the Acoustic Emission Generated by Tensile and Compressive Testing of 7075 Aluminum
,”
Eng. Frac. Mech.
,
9
(
3
), pp.
663
674
. https://www.sciencedirect.com/science/article/pii/0013794477900790
6.
Pao
,
Y.
,
1978
, “
Theory of Acoustic Emission
,”
Transactions of the 23rd Conference of Army Mathematicians
,
New York
.
7.
Lindley
,
T. C.
,
Palmer
,
I. G.
, and
Richards
,
C. E.
,
1978
, “
Acoustic Emission Monitoring of Fatigue Crack Growth
,”
Mater. Sci. Eng.
,
32
(
1
), pp.
1
15
.
8.
Rice
,
J. R.
,
1980
, “
Elastic Wave Emission From Damage Process
,”
J. Nondestruct. Eval.
,
1
(
4
), pp.
215
224
.
9.
Pollock
,
A.
,
1992
, “Acoustic Emission Inspection,”
ASM Handbook Vol. 17: Nondestructive Evaluation and Quality Control.
,
ASM International
,
Novelty, OH
, pp.
278
294
.
10.
Roberts
,
T. M.
, and
Talebzadeh
,
M.
,
2003
, “
Acoustic Emission Monitoring of Fatigue Crack Propagation
,”
J. Constr. Steel Res.
,
59
(
6
), pp.
695
712
.
11.
Ono
,
K.
,
2008
, “Chapter 1: Structural Integrity Evaluation by Means of Acoustic Emissions,”
Acoustic Emission and Critical Phenomena
,
A.
Carpinteri
, and
G.
Lacidogna
, eds.,
CRC Press Taylor and Francis Group
,
Boca Raton, FL
, pp.
12
28
.
12.
Ono
,
K.
,
2011
, “
Acoustic Emission in Material Research—A Review
,”
J. Acoust. Emiss.
,
29
, pp.
284
308
.
13.
Rabiei
,
M.
, and
Modarres
,
M.
,
2013
, “
Quantitative Methods for Structural Health Management Using In Situ Acoustic Emission Monitoring
,”
Int. J. Fatigue
,
49
, pp.
81
89
.
14.
Barsoum
,
F. F.
,
Suleman
,
J.
,
Korcak
,
A.
, and
Hill
,
E. V. K.
,
2009
, “
Acoustic Emission Monitoring and Fatigue Life Prediction in Axially Loaded Notched Steel Specimens
,”
J. Acoust. Emiss.
,
27
, pp.
40
63
. ISSN 0730-0050
15.
Physical Acoustics Corp., MISTRAS Group
, https://www.innerspec.com/portable/aewin-software.
16.
Sagar
,
R. V.
, and
Prasad
,
B. R.
,
2012
, “
A Review of Recent Developments in Parametric Based Acoustic Emission Techniques Applied to Concrete Structures
,”
Nondestruct. Test. Eval.
,
27
(
1
), pp.
47
68
.
17.
Yu
,
J.
,
Ziehl
,
P.
,
Zárate
,
B.
, and
Caicedo
,
J.
,
2011
, “
Prediction of Fatigue Crack Growth in Steel Bridge Components Using Acoustic Emission
,”
J. Constr. Steel Res.
,
67
(
8
), pp.
1254
1260
.
18.
Gagar
,
D.
,
Foote
,
P.
, and
Irving
,
P.
,
2014
, “
A Novel Closure Based Approach for Fatigue Crack Length Estimation Using the Acoustic Emission Technique in Structural Health Monitoring Applications
,”
Smart Mater. Struct.
,
23
(
10
), p.
105033
.
19.
Behrens
,
B.-A.
,
Hubner
,
S.
, and
Wolki
,
K.
,
2017
, “
Acoustic Emission—A Promising and Challenging Technique for Process Monitoring in Sheet Metal Forming
,”
J. Manuf. Process.
,
29
, pp.
281
288
.
20.
Chai
,
M.
,
Zhang
,
J.
,
Zhang
,
Z.
,
Duan
,
Q.
, and
Cheng
,
G.
,
2017
, “
Acoustic Emission Studies for Characterization of Fatigue Crack Growth in 316LN Stainless Steel and Welds
,”
Appl. Acoust.
,
126
, pp.
101
113
.
21.
Agletdinov
,
E.
,
Pomponi
,
E.
,
Merson
,
D.
, and
Vinogradov
,
A.
,
2016
, “
A Novel Bayesian Approach to Acoustic Emission Data Analysis
,”
Ultrasonics
,
72
, pp.
89
94
.
22.
Ono
,
K.
,
2014
, “Chapter 3: Acoustic Emission,”
Springer Handbook of Acoustics
, 2nd ed.,
T. D.
Rossing
, ed.,
Springer-Verlag
,
Berlin
, pp.
213
314
.
23.
Ciaburro
,
G.
, and
Iannace
,
G.
,
2022
, “
Machine-Learning-Based Methods for Acoustic Emission Testing: A Review
,”
Appl. Sci.
,
12
(
20
), p.
10476
.
24.
Muir
,
C.
,
Swaminathan
,
B.
,
Almansour
,
A. S.
,
Sevener
,
K.
,
Smith
,
C.
,
Presby
,
M.
,
Kiser
,
J. D.
,
Pollock
,
T. M.
, and
Daly
,
S.
,
2021
, “
Damage Mechanism Identification in Composites via Machine Learning and Acoustic Emission
,”
Npj Comput. Mater.
,
7
(
1
), p.
95
.
25.
Das
,
A. K.
,
Suthar
,
D.
, and
Leung
,
C. K. Y.
,
2019
, “
Machine Learning Based Crack Mode Classification From Unlabeled Acoustic Emission Waveform Features
,”
Cem. Concr. Res.
,
121
, pp.
42
57
.
26.
Giurgiutiu
,
V.
,
2014
,
Structural Health Monitoring With Piezoelectric Wafer Active Sensors
,
Elsevier Academic Press
,
New York
.
27.
Bhuiyan
,
M. Y.
, and
Giurgiutiu
,
V.
,
2018
, “
The Signatures of Acoustic Emission Waveforms From Fatigue Crack Advancing in Thin Metallic Plates
,”
Smart Mater. Struct.
,
27
(
1
), p.
015019
.
28.
Joseph
,
R.
, and
Giurgiutiu
,
V.
,
2023
, “
Non-Crack-Growth Acoustic Emission Observed in Controlled-Stress-Intensity-Factor High-Cycle-Fatigue Tests
,”
Actuators
,
12
(
3
), p.
93
.
29.
Meriaux
,
J.
,
Boinet
,
M.
,
Fouvry
,
S.
, and
Lenain
,
J. C.
,
2010
, “
Identification of Fretting Fatigue Crack Propagation Mechanisms Using Acoustic Emission
,”
Tribol. Int.
,
43
(
11
), pp.
2166
2174
.
30.
Joseph
,
R.
, and
Giurgiutiu
,
V.
,
2020
, “
Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals
,”
Sensors
,
20
(
20
), p.
5835
.
31.
Joseph
,
R.
,
Mei
,
H.
,
Migot
,
A.
, and
Giurgiutiu
,
V.
,
2021
, “
Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release During Fatigue-Crack Growth
,”
Sensors
,
21
(
8
), p.
4221
.
32.
Joseph
,
R.
,
Bhuiyan
,
M. Y.
, and
Giurgiutiu
,
V.
,
2019
, “
Acoustic Emission From Vibration of Cracked Sheet-Metal Samples
,”
Eng. Fract. Mech.
,
217
, p.
106544
.
33.
Poddar
,
B.
, and
Giurgiutiu
,
V.
,
2017
, “
Detectability of Crack Length From Acoustic Emissions Using Physics of Wave Propagation in Plate Structures
,”
J. Nondestr. Eval.
,
36
(
2
), pp.
3
13
.
34.
Giurgiutiu
,
V.
,
Bao
,
J. J.
,
Poddar
,
B.
, and
Bhuiyan
,
M. Y.
,
2020
, “
Identifying Structural Defect Geometric Features From Acoustic Emission Waveforms
,” U.S. Patent No. 10,801,998 B2.
35.
Bhuiyan
,
M. Y.
,
Bao
,
J.
,
Poddar
,
B.
, and
Giurgiutiu
,
V.
,
2017
, “
Towards Identifying Crack-Length-Related Resonances in Acoustic Emission Waveforms for Structural Health Monitoring Applications
,”
Struct. Health Monit.
,
17
(
3
), p.
577
585
.
36.
Bhuiyan
,
M. Y.
, and
Giurgiutiu
,
V.
,
2017
, “
Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment
,”
Materials
,
10
(
8
), p.
962
.
37.
Garrett
,
J. C.
,
Mei
,
H.
, and
Giurgiutiu
,
V.
,
2022
, “
An Artificial Intelligence Approach to Fatigue Crack Length Estimation From Acoustic Emission Waves in Thin Metallic Plates
,”
Appl. Sci.
,
12
(
3
), p.
1372
.
38.
Shen
,
Y.
, and
Giurgiutiu
,
V.
,
2015
, “
Effective Non-Reflective Boundary for Lamb Waves: Theory, Finite Element Implementation, and Applications
,”
Wave Motion
,
58
, pp.
22
41
.
39.
Ravi Chandran
,
K. S.
,
2017
, “
Insight on Physical Meaning of Finite-Width-Correction Factors in Stress Intensity Factor (K) Solutions of Fracture Mechanics
,”
Eng. Fract. Mech.
,
186
, pp.
399
409
.
40.
Davari
,
N.
,
Akbarizadeh
,
G.
, and
Mashhour
,
E.
,
2022
, “
Corona Detection and Power Equipment Classification Based on GoogleNet-AlexNet: An Accurate and Intelligent Defect Detection Model Based on Deep Learning for Power Distribution Lines
,”
IEEE Trans. Power Deliv.
,
37
(
4
), pp.
2766
2774
.
41.
Larsen
,
B. S.
,
2021
, Synthetic Minority Over-sampling Technique (SMOTE), https://github.com/dkbsl/matlab_smote/releases/tag/1.0, GitHub, Accessed November 1, 2021.
42.
Chawla
,
N. V.
,
Bowyer
,
K. W.
,
Hall
,
L. O.
, and
Kegelmeyer
,
W. P.
,
2002
, “
SMOTE: Synthetic Minority Over-Sampling Technique
,”
J. Artif. Intell. Res.
,
16
, pp.
321
357
.
You do not currently have access to this content.