Abstract

Increased effort for lightweighting of automotive structures results in the replacement of traditional metals with composites. Adhesive bonding is the best joining solution for composite components owing to its superior stress distribution and lightweighting. However, adhesive and adhesive-adhered interfaces are the weakest links in the structure. During fatigue crack propagation, joints do not show any significant visual changes. Thus, fatigue damage in adhesive bond lines is one of the challenging and complex failure mechanisms that requires real-time diagnostic and prognostic techniques to avoid any catastrophic failure. This paper proposes an acoustic technique for real-time fatigue damage diagnosis and prognosis. Based on experimental guided wave modal analysis, symmetric mode at 85 kHz is found to be the most sensitive mode–frequency combination for fatigue monitoring of selected lap-joint specimens. Further, a hybrid data-driven damage propagation model is used to estimate the remaining useful life in the bond line. The developed techniques were successfully implemented and validated on a single lap joint under fatigue loading. Estimated damage levels and remaining useful life are in good agreement with reference measurements. Successful validation is an indicator of the potential application of this technology in automotive industries.

References

1.
Palanisamy
,
R. P.
,
Karpenko
,
O.
,
Vattathurvalap-pil
,
S. H.
,
Deng
,
Y.
,
Udpa
,
L.
, and
Haq
,
M.
,
2021
, “
Guided Wave Monitoring of Nano-fe3o4 Reinforced Thermoplastic Adhesive in Manufacturing of Reversible Composite Lap-Joints Using Targeted Electromagnetic Heating
,”
NDT&E Int.
,
122
, p.
102481
.
2.
Palanisamy
,
R. P.
,
Banerjee
,
P.
,
Mukherjee
,
S.
,
Haq
,
M.
, and
Deng
,
Y.
,
2020
, “
Fatigue Damage Prognosis in Adhesive Bonded Composite Lap-Joints Using Guided Waves
,”
Proceedings of the 2020 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
IEEE
, pp.
1
7
.
3.
Quaegebeur
,
N.
,
Micheau
,
P.
,
Masson
,
P.
, and
Be- langer
,
H.
,
2011
, “
Structural Health Monitoring of Bonded Composite Joints Using Piezoceramics
,”
Smart Materials, Structures & NDT in Aerospace
, November, 10.
4.
Rose
,
J. L.
,
Rajana
,
K.
, and
Hansch
,
M.
,
1995
, “
Ultrasonic Guided Waves for NDE of Adhesively Bonded Structures
,”
J. Adhes.
,
50
(
1
), pp.
71
82
.
5.
Lugovtsova
,
Y.
,
Bulling
,
J.
,
Boller
,
C.
, and
Prager
,
J.
,
2019
, “
Analysis of Guided Wave Propagation in a Multilayered Structure in View of Structural Health Monitoring
,”
Appl. Sci.
,
9
(
21
), p.
4600
.
6.
Sikdar
,
S.
,
2019
, “
Multi-level Nondestructive Analysis of Joint-Debond Effects in Sandwich Composite Structure
,”
Polym. Test.
,
80
, p.
106149
.
7.
Sikdar
,
S.
,
Fiborek
,
P.
,
Kudela
,
P.
,
Banerjee
,
S.
, and
Ostachowicz
,
W.
,
2018
, “
Effects of Debonding on Lamb Wave Propagation in a Bonded Composite Structure Under Variable Temperature Conditions
,”
Smart Mater. Struct.
,
28
(
1
), p.
015021
.
8.
Negi
,
P. S.
,
Koodalil
,
D.
, and
Balasubramaniam
,
K.
,
2022
, “Detection of Interfacial Weakness (Kissing Bonds) in Honeycomb Sandwich Structure Using Guided Waves,”
Advances in Non Destructive Evaluation
,
Springer
,
New York
, pp.
401
410
.
9.
Jankauskas
,
A.
, and
Mazeika
,
L.
,
2016
, “
Ultrasonic Guided Wave Propagation Through Welded Lap Joints
,”
Metals
,
6
(
12
), p.
315
.
10.
Lanza di Scalea
,
F.
,
Rizzo
,
P.
, and
Marzani
,
A.
,
2004
, “
Propagation of Ultrasonic Guided Waves in Lap-Shear Adhesive Joints: Case of Incident a 0 Lamb Wave
,”
J. Acoust. Soc. Am.
,
115
(
1
), pp.
146
156
.
11.
Santos
,
M.
, and
Faia
,
P.
,
2009
, “
Propagation of Ultrasonic Lamb Waves in Aluminium Adhesively Bonded Lap Joints and in Single Plates
,”
Res. Nondestruct. Eval.
,
20
(
3
), pp.
178
191
.
12.
Siryabe
,
E.
,
Renier
,
M.
,
Meziane
,
A.
, and
Castaings
,
M.
,
2015
, “
The Transmission of Lamb Waves Across Adhesively Bonded Lap Joints to Evaluate Interfacial Adhesive Properties
,”
Phys. Procedia
,
70
, pp.
541
544
.
13.
Palanisamy
,
R. P.
,
Banerjee
,
P.
,
Haq
,
M.
, and
Deng
,
Y.
,
2021
, “
Numerical Modal Sensitivity Analysis for Fatigue Damage Accumulation in Adhesively Bonded Lap-Joint
,”
ASME International Mechanical Engineering Congress and Exposition, Vol. 85543
,
Virtual, Online
,
Nov. 1–5
, American Society of Mechanical Engineers, p. V001T01A014.
14.
Castaings
,
M.
,
2014
, “
Sh Ultrasonic Guided Waves for the Evaluation of Interfacial Adhesion
,”
Ultrasonics
,
54
(
7
), pp.
1760
1775
.
15.
Geetha
,
G. K.
,
Mahapatra
,
D. R.
,
Gopalakrishnan
,
S.
, and
Hanagud
,
S.
,
2016
, “
Laser Doppler Imaging of Delamination in a Composite t-Joint With Remotely Located Ultrasonic Actuators
,”
Compos. Struct.
,
147
, pp.
197
210
.
16.
Dalton
,
R.
,
Cawley
,
P.
, and
Lowe
,
M.
,
2001
, “
The Potential of Guided Waves for Monitoring Large Areas of Metallic Aircraft Fuselage Structure
,”
J. Nondestruct. Eval.
,
20
(
1
), pp.
29
46
.
17.
Drinkwater
,
B. W.
,
Castaings
,
M.
, and
Hosten
,
B.
,
2003
, “
The Measurement of a 0 and s 0 Lamb Wave Attenuation to Determine the Normal and Shear Stiffnesses of a Compressively Loaded Interface
,”
J. Acoust. Soc. Am.
,
113
(
6
), pp.
3161
3170
.
18.
Geetha
,
G. K.
,
Rathod
,
V.
,
Chakraborty
,
N.
,
Mahapatra
,
D. R.
, and
Gopalakrishnan
,
S.
,
2011
, “
Rapid Localization and Ultrasonic Imaging of Multiple Damages in Structural Panel With Piezoelectric Sensor-Actuator Network
,”
Proceedings of the 8th International Workshop on Structural Health Monitoring
,
Stanford, CA
,
Sept. 13–15
, vol.
2
, pp.
249
256
.
19.
Karpenko
,
O.
,
Koricho
,
E.
,
Khomenko
,
A.
,
Dib
,
G.
,
Haq
,
M.
, and
Udpa
,
L.
,
2015
, “
Multitechnique Monitoring of Fatigue Damage in Adhesively Bonded Composite Lap-Joints
,”
AIP Conference Proceedings, Vol. 1650
,
Boise, ID
,
July 20–25
, American Institute of Physics, pp.
1102
1111
.
20.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws.
ASME. J. Basic Eng.
,
85
(
4
), pp.
528
533
.
21.
Kacprzynski
,
G.
,
Sarlashkar
,
A.
,
Roemer
,
M.
,
Hess
,
A.
, and
Hardman
,
B.
,
2004
, “
Predicting Remaining Life by Fusing the Physics of Failure Modeling With Diagnostics
,”
JOM
,
56
(
3
), pp.
29
35
.
22.
Sander
,
M.
, and
Richard
,
H.
,
2003
, “
Lifetime Predictions for Real Loading Situations—Concepts and Experimental Results of Fatigue Crack Growth
,”
Int. J. Fatigue
,
25
(
9
), pp.
999
1005
.
23.
Abdel Wahab
,
M.
,
Hilmy
,
I.
,
Ashcroft
,
I.
, and
Cro- combe
,
A.
,
2010
, “
Evaluation of Fatigue Damage in Adhesive Bonding: Part 2: Single Lap Joint
,”
J. Adhes. Sci. Technol.
,
24
(
2
), pp.
325
345
.
24.
Panigrahi
,
S.
, and
Pradhan
,
B.
,
2007
, “
Three Dimensional Failure Analysis and Damage Propagation Behavior of Adhesively Bonded Single Lap Joints in Laminated FRP Composites
,”
J. Reinf. Plast. Compos.
,
26
(
2
), pp.
183
201
.
25.
Gebraeel
,
N.
,
Lawley
,
M.
,
Liu
,
R.
, and
Parmesh- waran
,
V.
,
2004
, “
Residual Life Predictions From Vibration-Based Degradation Signals: A Neural Network Approach
,”
IEEE Trans. Ind. Electron.
,
51
(
3
), pp.
694
700
.
26.
Hu
,
C.
,
Youn
,
B. D.
,
Wang
,
P.
, and
Yoon
,
J. T.
,
2012
, “
Ensemble of Data-Driven Prognostic Algorithms for Robust Prediction of Remaining Useful Life
,”
Reliab. Eng. Syst. Saf.
,
103
, pp.
120
135
.
27.
An
,
D.
,
Choi
,
J.-H.
, and
Kim
,
N. H.
,
2011
, “
Identification of Correlated Damage Parameters Under Noise and Bias Using Bayesian Inference
,”
Struct. Health. Monit.
,
11
(
3
), pp.
293
303
.
28.
Palanisamy
,
R. P.
,
Cho
,
S.
,
Kim
,
H.
, and
Sim
,
S.-H.
,
2015
, “
Experimental Validation of Kalman Filter-Based Strain Estimation in Structures Subjected to Non-zero Mean Input
,”
Smart Struct. Sys t.
,
15
(
2
), pp.
489
503
.
29.
Palanisamy
,
R. P.
,
Jung
,
B.-J.
,
Sim
,
S.-H.
, and
Yi
,
J.-H.
,
2019
, “
Quasi Real-Time and Continuous Non-stationary Strain Estimation in Bottom-Fixed Offshore Structures by Multimetric Data Fusion
,”
Smart Struc. t. Syst.
,
23
(
1
), pp.
61
69
.
30.
Banerjee
,
P.
,
Palanisamy
,
R. P.
,
Udpa
,
L.
,
Haq
,
M.
, and
Deng
,
Y.
,
2019
, “
Prognosis of Fatigue Induced Stiffness Degradation in Gfrps Using Multi-modal NDE Data
,”
Compos. Struct.
,
229
, p.
111424
.
31.
D 5868, A.
,
2014
,
Astm International. d5868- 01(2014) Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding
,
ASTM International
,
West Conshohocken, PA
.
32.
Abdel Wahab
,
M.
,
2012
, “
Fatigue in Adhesively Bonded Joints: A Review
,”
ISRN Mater. Sci.
,
2012
, pp.
1
25
.
33.
Ayatollahi
,
M.
,
Samari
,
M.
,
Razavi
,
S.
, and
da Silva
,
L.
,
2017
, “
Fatigue Performance of Adhesively Bonded Single Lap Joints With Non-flat Sinusoid Interfaces
,”
Fatigue Fract. Eng. Mater. Struct.
,
40
(
9
), pp.
1355
1363
.
34.
Banerjee
,
P.
,
Karpenko
,
O.
,
Udpa
,
L.
,
Haq
,
M.
, and
Deng
,
Y.
,
2018
, “
Prediction of Impact-Damage Growth in Gfrp Plates Using Particle Filtering Algorithm
,”
Compos. Struct.
,
194
, pp.
527
536
.
35.
Banerjee
,
P.
,
Palanisamy
,
R. P.
,
Haq
,
M.
,
Udpa
,
L.
, and
Deng
,
Y.
,
2019
, “
Data-Driven Prognosis of Fatigue-Induced Delamination in Composites Using Optical and Acoustic NDE Methods
,”
Proceedings of the 2019 IEEE International Conference on Prognostics and Health Management (ICPHM)
,
San Francisco, CA
,
June 17–20
, IEEE, pp.
1
10
.
You do not currently have access to this content.