Abstract

This paper presents a modeling and simulation method for studying ultrasonic guided wave propagation in hybrid metal-composites, also known as fiber-metal laminates. The objective is to develop an efficient and versatile modeling tool to aid in the design of cost-effective nondestructive evaluation technologies. The global–local method, which combines finite element discretization and Lamb wave modal expansion is used. An extension to the traditional global–local method is made to couple the source problem with the scattering problem to deal with a surface source generating Lamb waves that interact with defects in multilayered structures. This framework is used to study the sensitivity of different excitation frequencies to ply gap defects of various sizes. The coupled model considers the transducer contact conditions and the ultrasonic system response in the Lamb wave excitation, along with the scattering phenomenon caused by the defects. This combined result is used to define the optimal excitation frequency for the strongest transmission or reflection for a given defect size that can be observed in a physical experiment. Such results can be applied to the design of a damage detection scheme in realistic aerospace structures.

References

1.
Alderliesten
,
R. C.
, and
Benedictus
,
R.
,
2008
, “
Fiber/Metal Composite Technology for Future Primary Aircraft Structures
,”
J. Aircr.
,
45
(
4
), pp.
1182
1189
. 10.2514/1.33946
2.
Fink
,
A.
,
Camanho
,
P.
, and
Andres
,
J.
,
2010
, “
Hybrid CFRP/Titanium Bolted Joints: Performance Assessment and Application to a Spacecraft Payload Adaptor
,”
Compos. Sci. Technol.
,
70
(
2
), pp.
305
317
. 10.1016/j.compscitech.2009.11.002
3.
Memmolo
,
V.
,
Maio
,
L.
, and
Boffa
,
N. D.
,
2015
, “
Damage Detection Tomography Based on Guided Waves in Composite Structures Using a Distributed Sensor Network
,”
SPIE
,
55
(
1
), pp.
1
11
. 10.1117/1.oe.55.1.011007
4.
Mei
,
H.
,
Haider
,
M. F.
,
James
,
R.
, and
Giurgiutiu
,
V.
,
2020
, “
Pure S0 and SH0 Detections of Various Damage Types in Aerospace Composites
,”
Compos. Part B: Eng.
,
189
, p.
1
. 10.1016/j.compositesb.2020.107906
5.
De Luca
,
A.
,
Perfetto
,
D.
,
De Fenza
,
A.
,
Petrone
,
G.
, and
Caputo
,
F.
,
2020
, “
Guided Wave SHM System for Damage Detection in Complex Composite Structure
,”
Theor. Appl. Fract. Mech.
,
105
, pp.
102408
. 10.1016/j.tafmec.2019.102408
6.
Zhang
,
C.
,
Zhang
,
Z.
,
Ji
,
H.
,
Qui
,
J.
, and
Tao
,
C.
,
2020
, “
Mode Conversion Behavior of Guided Wave in Glass Fiber Reinforced Polymer With Fatigue Damage Accumulation
,”
Compos. Sci. Technol.
,
192
, p.
1
. 10.1016/j.compscitech.2020.108073
7.
Cho
,
Y.
, and
Rose
,
J.
,
1996
, “
A Boundary Element Solution for a Mode Conversion Study on the Edge Reflection of Lamb Waves
,”
J. Acoust. Soc. Am.
,
99
(
4
), pp.
2097
2109
. 10.1121/1.415396
8.
Galan
,
J.
, and
Abascal
,
R.
,
2002
, “
Numerical Simulation of Lamb Wave Scattering in Semi-Infinite Plates
,”
Int. J. Numer. Methods Eng.
,
53
(5), pp.
1145
1173
. 10.1002/nme.331
9.
Delsanto
,
P.
,
Schechter
,
R.
,
Chaskelis
,
H.
,
Mignogna
,
R.
, and
Kline
,
R.
,
1994
, “
Connection Machine Simulation of Ultrasonic Wave Propagation in Materials. II: The Two-Dimensional Case
,”
Wave Motion
,
20
(
4
), pp.
295
314
. 10.1016/0165-2125(94)90016-7
10.
Shen
,
Y.
, and
Cesnik
,
C.
,
2015
, “
Hybrid Local FEM/Global LISA Modeling of Guided Wave Propagation and Interaction With Damage in Composite Structures
,”
SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring
,
San Diego, CA
,
Mar. 23
.
11.
Koshiba
,
M.
,
Karakida
,
S.
, and
Suzuki
,
M.
,
1984
, “
Finite-Element Analysis of Lamb Wave Scattering in an Elastic Plate Waveguide
,”
IEEE Trans. Sonics Ultrason.
,
31
(
1
), pp.
18
24
. 10.1109/T-SU.1984.31456
12.
Banerjee
,
S.
,
Banerji
,
P.
,
Berning
,
F.
, and
Eberle
,
K.
,
2003
, “
Lamb Wave Propagation and Scattering in Layered Composite Plates
,”
SPIE NDE for Health Monitoring and Diagnostics
,
San Diego, CA
,
Aug. 1
.
13.
Al-Nassar
,
Y. N.
,
Datta
,
S. K.
, and
Shah
,
A. H.
,
1991
, “
Scattering of Lamb Waves by a Normal Rectangular Strip Weldment
,”
Ultrasonics
,
29
(
2
), pp.
125
132
. 10.1016/0041-624X(91)90041-6
14.
Chang
,
Z.
,
Guo
,
D.
, and
Mal
,
A.
,
1996
, “
Lamb Wave Propagation Across a Lap Joint
,”
Rev. Prog. Quant. Nondestr. Eval.
,
15
, pp.
185
192
. 10.1007/978-1-4613-0383-1_23
15.
Chang
,
Z.
, and
Mal
,
A.
,
1999
, “
Scattering of Lamb Waves From a Rivet Hole With Edge Cracks
,”
Mech. Mater.
,
31
(
3
), pp.
197
204
. 10.1016/S0167-6636(98)00060-X
16.
Ahmad
,
Z. A.
,
Vibar-Perez
,
J. M.
, and
Gabbert
,
U.
,
2013
, “
Semi-Analytical Finite Element Method for Modeling of Lamb Wave Propagation
,”
CEAS Aeronaut. J.
,
4
(
1
), pp.
421
433
. 10.1007/s13272-012-0056-6
17.
Srivastava
,
A.
, and
Lanza di Scalea
,
F.
,
2010
, “
Quantitative Structural Health Monitoring by Ultrasonic Guided Waves
,”
J. Eng. Mech.
,
136
(
8
), pp.
937
944
. 10.1061/(ASCE)EM.1943-7889.0000136
18.
Spada
,
A.
,
Capriotti
,
M.
, and
Lanza di Scalea
,
F.
,
2020
, “
Global-Local Model for Guided Wave Scattering Problems With Application to Defect Characterization in Built-Up Composite Structures
,”
Int. J. Solids Struct.
,
182
, pp.
267
280
. 10.1016/j.ijsolstr.2019.08.015
19.
Maess
,
M.
,
Herrmann
,
J.
, and
Gaul
,
L.
,
2007
, “
Finite Element Analysis of Guided Waves in Fluid-Filled Corrugated Pipes
,”
J. Acoust. Soc.
,
121
(
3
), pp.
1313
1323
. 10.1121/1.2436711
20.
Schaal
,
C.
,
M'Closkey
,
R.
, and
Mal
,
A.
,
2016
, “
A Semi-Analytical Method for Calculating Resonator Energy Loss Into Plate Substrates
,”
IEEE International Symposium on Inertial Sensors and Systems
,
Laguna Beach, CA
,
Feb. 22–25
, pp.
17
20
.
21.
Mal
,
A.
,
Yin
,
C.
, and
Bar-Cohen
,
Y.
,
1991
, “
Analysis of Acoustic Pulses Reflected From Fiber-Reinforced Composite Laminates
,”
J. Appl. Mech.
,
59
(
2
), pp.
136
144
.
22.
Schaal
,
C.
,
Samajder
,
H.
,
Baid
,
H.
, and
Mal
,
A.
,
2015
, “
Rayleigh to Lamb Wave Conversion at a Delamination-Like Crack
,”
J. Sound Vib.
,
353
, pp.
150
163
. 10.1016/j.jsv.2015.05.016
23.
Schaal
,
C.
,
Zhang
,
S.
, and
Samajder
,
H.
,
2017
, “
An Analytical Study of the Scattering of Ultrasonic Guided Waves at a Delamination-Like Discontinuity in a Plate
,”
J. Mech. Eng. Sci.
,
231
(
16
), pp.
2947
2960
.
24.
Schaal
,
C.
, and
Mal
,
A.
,
2016
, “
Lamb Wave Propagation in a Plate With Step Discontinuities
,”
Wave Motion
,
66
, pp.
177
189
. 10.1016/j.wavemoti.2016.06.012
25.
Nedospasov
,
I.
,
Mozhaev
,
V.
, and
Kuznetsova
,
I.
,
2017
, “
Unusual Energy Properties of Leaky Backward Lamb Waves in a Submerged Plate
,”
Ultrasonics
,
77
, pp.
95
99
. 10.1016/j.ultras.2017.01.025
26.
Haider
,
M. F.
, and
Giurgiutiu
,
V.
,
2019
, “
An Improved Analytical Method to Overcome Convergence Issues in Composites Guided Wave Prediction
,”
Proceedings of SPIE
,
Denver, CO
,
Apr. 1
.
27.
Kundu
,
T.
, and
Mal
,
A.
,
1985
, “
Elastic Waves in a Multilayered Solid Due to a Dislocation Source
,”
Wave Motion
,
7
(
5
), pp.
459
471
. 10.1016/0165-2125(85)90020-4
28.
Tai
,
S.
,
Wang
,
L.
,
Araque
,
L.
,
Mal
,
A.
, and
Schaal
,
C.
,
2019
, “
Effects of Homogenization and Quasi-Isotropy Assumptions on Guided Wave-Based Nondestructive Testing Methods
,”
International Workshop on Structural Health Monitoring
,
Stanford
,
2019
.
29.
Haider
,
M. F.
,
Poddar
,
B.
, and
Giurgiutiu
,
V.
,
2018
, “
Experimental Validation of an Analytical Method to Predict Lamb Wave Scattering From a Discontinuity
,”
Smart Mater. Struct.
,
28
(
1
), pp.
1
14
. 10.1088/1361-665x/aae910
You do not currently have access to this content.