Double-diffusive natural convection flow in square enclosure filled with nanofluid is studied in this paper. Water based nanofluid containing various nanoparticles including Cu, Ag, Al2O3, and TiO2 is used in the numerical analysis. The upper and lower walls of the enclosure are well insulated and impermeable and the left and right walls are imposed to constant temperatures and concentration. Laminar regime under steady state condition is considered. The Maxwell–Garnett model is used to predict the ratio of thermal conductivity. The system of conservation equations consisting of continuity, momentum, energy, and solute concentration in dimensionless form are solved by using finite volume SIMPLE algorithm. Results are presented for different values of the governing parameters Rayleigh and Lewis number, in terms of streamlines, isotherms, isoconcentration, local Nusselt number, and local Sherwood number. The effect of nanoparticle volume fractions are also discussed on heat transfer characteristics in the cavity.

1.
Jana
,
S.
,
Salehi-Khojin
,
A.
, and
Zhong
,
W. H.
, 2007, “
Enhancement of Fluid Thermal Conductivity by the Addition of Single and Hybrid Nano-Additives
,”
Thermochimica Acta
0040-6031,
462
, pp.
45
55
.
2.
Daungthongsuk
,
W.
, and
Wongwises
,
S.
, 2007, “
A Critical Review of Convective Heat Transfer Nanofluids
,”
Renewable Sustainable Energy Rev.
1364-0321,
11
, pp.
797
817
.
3.
Trisaksri
,
V.
, and
Wongwises
,
S.
, 2007, “
Critical Review of Heat Transfer Characteristics of Nanofluids
,”
Renewable Sustainable Energy Rev.
1364-0321,
11
, pp.
512
523
.
4.
Hwang
,
K. S.
,
Lee
,
J. H.
, and
Jang
,
S. P.
, 2007, “
Buoyancy-Driven Heat Transfer Of Water Based Al2O3 Nanofluids in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
50
, pp.
4003
4010
.
5.
Khanafer
,
K.
,
Vafai
,
K.
, and
Lightstone
,
M.
, 2003, “
Buoyancy-Driven Heat Transfer Enhancement in a Two Dimensional Enclosure Utilizing Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3639
3653
.
6.
Abu-Nada
,
E.
,
Masoud
,
Z.
, and
Hijazi
,
A.
, 2008, “
Natural Convection Heat Transfer Enhancement in Horizontal Concentric Annuli Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933,
35
(
5
), pp.
657
665
.
7.
Abu-Nada
,
E.
,
Masoud
,
Z.
,
Oztop
,
H. F.
, and
Campo
,
N.
, 2010, “
Effect of Nanofluid Variable Properties on Natural Convection in Enclosures
,”
Int. J. Therm. Sci.
1290-0729,
49
, pp.
479
491
.
8.
Ghasemi
,
B.
, and
Aminossadati
,
S. M.
, 2010, “
Mixed Convection in a Lid-Driven Triangular Enclosure Filled With Nanofluids
,”
Int. Commun. Heat Mass Transfer
0735-1933,
37
, pp.
1142
1148
.
9.
Saleh
,
H.
,
Roslan
,
R.
, and
Hashim
,
I.
, 2011, “
Natural Convection Heat Transfer in a Nanofluid-Filled Trapezoidal Enclosure
,”
Int. J. Heat Mass Transfer
0017-9310,
54
, pp.
194
201
.
10.
Wen
,
D.
, and
Ding
,
Y.
, 2004, “
Experimental Investigation Into Convective Heat Transfer of Nanofluids at the Entrance Region Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5181
5188
.
11.
Ho
,
C. J.
,
Liu
,
W. K.
,
Chang
,
Y. S.
, and
Lin
,
C. C.
, 2010, “
Natural Convection Heat Transfer Of Alumina-Water Nanofluid in Vertical Square Enclosures: An Experimental Study
,”
Int. J. Therm. Sci.
1290-0729,
49
, pp.
1345
1353
.
12.
Chen
,
S.
,
Tolke
,
J.
, and
Krafczyk
,
M.
, 2010, “
Numerical Simulation of Double Diffusive (Natural) Convection in Vertical Annuluses With Opposing Temperature and Concentration Gradients
,”
Int. J. Heat Fluid Flow
0142-727X,
31
, pp.
217
226
.
13.
Turner
,
J. S.
, 1974, “
Double Diffusive Phenomena
,”
Annu. Rev. Fluid Mech.
0066-4189,
6
, pp.
37
54
.
14.
Schmitt
,
R. W.
, 1994, “
Double Diffusion in Oceanography
,”
Annu. Rev. Fluid Mech.
0066-4189,
26
, pp.
255
285
.
15.
Ostrach
,
S.
, 1980, “
Natural Convection With Combined Driving Forces
,”
PCH, PhysicoChem. Hydrodyn.
0191-9059,
1
, pp.
233
247
.
16.
Lee
,
J.
,
Hyun
,
M. T.
, and
Kim
,
G. W.
, 1988, “
Natural Convection in Confined Fluids With Horizontal Temperature and Concentration Gradients
,”
Int. J. Heat Mass Transfer
0017-9310,
31
, pp.
1969
1977
.
17.
Kamakura
,
K.
, and
Ozoe
,
H.
, 1997, “
Double-Diffusive Natural Convection in a Rectangle With Horizontal Temperature and Concentration Gradient Resulting in Cooperating Buoyancy Forces Near the Vertical Walls
,”
J. Mater. Process. Manuf. Sci.
1062-0656,
5
(
3
), pp.
83
196
.
18.
Wang
,
L. W.
,
Chai
,
A. T.
, and
Rashidnia
,
N.
, 1990, “
Ground-Based Experiments on Thermal and Thermosolutal Convection in an Inclined Low-Aspect Ratio Enclosure
,” AIAA Paper No. 90-0413.
19.
Coriell
,
S. R.
,
Cordes
,
M. R.
, and
Baettinger
,
W. J.
, 1980, “
Convective and Interfacial Instabilities During Unidirectional Solidification of a Binary Alloy
,”
J. Cryst. Growth
0022-0248,
49
, pp.
13
28
.
20.
Gobin
,
D.
, and
Bennacer
,
R.
, 1996, “
Cooperation Thermosolutal Convection in Enclosures
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2683
2697
.
21.
Sezai
,
I.
, and
Mohamad
,
A. A.
, 2000, “
Double Diffusive Convection in a Cubic Enclosure With Opposing Temperature and Concentration Gradients
,”
Phys. Fluids
1070-6631,
12
, pp.
2210
2223
.
22.
Bergeon
,
A.
, and
Knobloch
,
E.
, 2002, “
Natural Doubly Diffusive Convection in Three Dimensional Enclosures
,”
Phys. Fluids
1070-6631,
14
, pp.
3233
3250
.
23.
Sun
,
H.
,
Lauriat
,
G.
,
Sun
,
D. L.
, and
Tao
,
W. Q.
, 2010, “
Transient Double Diffusive Convection in an Enclosure With Large Density Variations
,”
Int. J. Heat Mass Transfer
0017-9310,
53
, pp.
615
625
.
24.
Nithyadevi
,
N.
, and
Yang
,
R. J.
, 2009, “
Double Diffusive Natural Convection in a Partially Heated Enclosure With Soret and DUFOUR effects
,”
Int. J. Heat Fluid Flow
0142-727X,
30
, pp.
902
910
.
25.
Ibrahim
,
A.
, and
Lemonnier
,
D.
, 2009, “
Numerical Study of Coupled Double-Diffusive Natural Convection and Radiation in a Square Cavity Filled With N2–CO2 Mixture
,”
Int. Commun. Heat Mass Transfer
0735-1933,
36
, pp.
197
202
.
26.
Teamah
,
M. A.
, 2008, “
Numerical Simulation of Double Diffusive Natural Convection in Rectangular Enclosure in the Presence of Magnetic Field and Heat Source
,”
Int. J. Thermal Sci.
1290-0729,
47
, pp.
237
248
.
27.
Büyük Ögüt
,
E. B.
, 2009, “
Natural Convection of Water-Based Nanofluids in an Inclined Enclosure With a Heat Source
,”
Int. J. Therm. Sci.
1290-0729,
48
, pp.
2063
2073
.
28.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two Component System
,”
I&EC Fundumentals
,
1
, pp.
187
191
.
29.
Xuan
,
Y.
, and
Roetzel
,
W.
, 2000, “
Conceptions for Heat Transfer Correlations of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3701
3707
.
30.
Roy
,
G.
,
Nguyen
,
C. T.
, and
Lajoie
,
P. R.
, 2004, “
Numerical Investigation of Laminar Flow and Heat Transfer in a Radial Flow Cooling System With the Use of Nanofluids
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
497
511
.
31.
Maiga
,
S. E. B.
,
Nguyen
,
C. T.
,
Galanis
,
N.
, and
Roy
,
G.
, 2004, “
Heat Transfer Behaviors of Nanofluids in a Uniformly Heated Tube
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
543
557
.
32.
Brinkman
,
H. C.
, 1952, “
The Viscosity of Concentrated Suspensions and Solution
,”
J. Chem. Phys.
0021-9606,
20
, pp.
571
581
.
33.
De Vahl Davis
,
G.
, and
Jones
,
I. P.
, 1983, “
Natural Convection in a Square Cavity: A Comparison Exercise
,”
Int. J. Numer. Methods Fluids
0271-2091,
3
, pp.
227
248
.
You do not currently have access to this content.