Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 33
Surface roughness
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. December 2020, 8(4): 041015.
Paper No: JMNM-20-1049
Published Online: February 22, 2021
Abstract
Given the recent trend toward hybrid processing involving the integration of wire arc additive manufacturing (WAAM) and machining capabilities, this paper aims to identify and correlate microstructural variations observed in wire arc additively manufactured aluminum alloy 4043 workpieces to their specific micromilling responses. This is done with the explicit goal of assessing the feasibility of using micromilling responses to detect microstructural variations in WAAM workpieces. As part of this effort, variations in the interlayer cooling time are used to induce changes in the microstructure of a thin-wall WAAM workpiece. The microstructures are first characterized using in-process thermographic imaging, optical microscopy, polarized light microscopy, and indentation. Micromilling slotting experiments are then conducted on different regions within the workpiece. The findings suggest that cutting force signals are the premier candidate for in situ extraction of information regarding microstructural variations within WAAM workpieces. In particular, in situ analysis of the cutting force frequency spectrum can provide critical information regarding dominant failure mechanisms related to the underlying microstructure. Other key micromilling responses such as surface roughness, burr formation, and tool wear also correlate well with the underlying microstructural variations. While these early stage findings hold promise, future research efforts spanning multiple metal alloys systems and micromachining processes are needed to mature the proposed concept.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. September 2020, 8(3): 034501.
Paper No: JMNM-20-1055
Published Online: November 16, 2020
Abstract
We report a surface treatment for an elastomeric dry adhesive that improves adhesion, especially on surfaces with microscopic roughness. The process involves coating wedge-shaped polydimethylsiloxane (PDMS) features of the adhesive with a 50 nm coating of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS). As compared to the uncoated adhesive, performance is 1.25 × better on smooth surfaces like glass, with a maximum shear stress of 70 kPa in shear and 25 kPa in normal adhesion under controlled loading conditions. On slightly rough surfaces such as paper and panels painted with flat paint, it provides between 2.5 × and over 12 × greater shear stress than the uncoated adhesive. Moreover, the coating, being much stiffer than the underlying wedges, does not increase the tendency to become dirty and does not tend to self-stick, or clump. Durability tests show that the performance remains substantially unchanged for 80,000 attachment/loading/detachment cycles. We describe the coating process, present the test results, and discuss the reasons for the enhanced performance on a variety of materials.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. September 2020, 8(3): 031007.
Paper No: JMNM-20-1015
Published Online: November 5, 2020
Abstract
Nickel-based superalloys have a wide range of high-temperature applications such as turbine blades. The complex geometries of these applications and the specific properties of the materials raise difficulties in the surface finishing. Magnetic abrasive finishing (MAF) has proven effective in finishing the complex geometries. In MAF, the magnetic properties of the workpiece, tool, and abrasive play important roles in controlling finishing characteristics. This paper presents the effects of nickel coating on the abrasive behavior during finishing and resulting finishing characteristics of Ni-based superalloys. The Ni-coated diamond abrasive is more attracted to the magnet than the Ni-based superalloy surface. As a result, fewer Ni-coated diamond abrasive particles, which are stuck between the magnetic-particle brush and the target surface, participate in surface finishing. Because of this, coupled with the reduced sharpness of abrasive cutting edges due to the coating, Ni-coated diamond abrasive cannot effectively smooth the target surface in MAF. However, the Ni coating is worn off during finishing of the hard, rough, additively manufactured surface. Then, the diamond abrasive participates in finishing as uncoated diamond abrasive and facilitates the material removal, finishing the target surface.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. September 2020, 8(3): 031002.
Paper No: JMNM-19-1081
Published Online: April 30, 2020
Abstract
The influence of a subnanosecond pulsed laser-based scribing of copper (Cu) and aluminum (Al) in salt solutions (NaCl and KCl) on the formation of microchannels is reported. This technique allows laser scribing along with selective etching of Cu and Al thin films. The focused laser beam can elevate the surface temperature on the sample and hence the chemical reaction rate, resulting in combined ablation with selective-area etching. The depth of microchannels in Cu and Al films is increased by 3–5 μ m using the proposed hybrid technique. The average surface roughness values in the microchannel are decreased compared to that of scribing in water and air. The hybrid approach of laser-based scribing combined with electrochemical etching in neutral salt solutions allows uniform channel with almost no redeposit layer and debris on the channel edges. Further, an approach wherein, an application of direct current (DC) voltage (1.2 V) between the tool and the workpiece while laser scribing of Cu and Al in salt solution was demonstrated to improve the channel depth by few micrometers. This hybrid machining technique has also resulted in a reduction in the surface oxidation near the laser-ablated zone compared to that observed in air and water-based experiments.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. June 2020, 8(2): 024501.
Paper No: JMNM-19-1045
Published Online: March 27, 2020
Abstract
In this study, atmospheric-pressure (AP) plasma generated using He/O 2 /CF 4 mixture as feed gas was used to etch the single-crystal silicon (100) wafer and the characteristics of the etched surface were investigated. The wafer morphology and surface elemental composition were analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS), respectively. The XPS results reveal that the fluorine element will be deposited on the wafer surface during the etching process when oxygen was not introduced as the feed gas. By detecting the energy and intensity of emitted particles, optical emission spectroscopy (OES) is used to identify the radicals in plasma. The fluorocarbon radicals generated during CF 4 plasma ionization can form carbon fluoride polymer, which is considered as one factor to suppress the etching process. The roughness was measured to be changed with the increase in the etching time. The surface appears to be rougher at first when the plasma etching occurred on the subsurface damaged (SSD) layer, and the subsurface cracks would show on the surface after a short-time etching. After the damaged layer was fully removed, etching resulted in the formation of square-opening etching pits. During extended etching, the individual etching pits grew up and coalesced with one another; this coalescence provided an improved surface roughness. This study explains the AP plasma etching mechanism, and the formation of anisotropic surface etching pits at a microscale level for promoting the micromachining process.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. June 2020, 8(2): 024506.
Paper No: JMNM-19-1059
Published Online: March 27, 2020
Abstract
Recent developments have showcased that micro-extrusion of feedstock can be used for manufacturing metallic microbi-lumen tubes with very high length-to-diameter aspect ratios, which are not viable by conventional metal extrusion or commonly used feedstock processing technologies like injection molding or hot pressing. The extrusion of high aspect ratio microcomponents faces the challenge of maintaining the geometrical accuracy, surface finish, and structural properties since the micro-extrusion in green state is followed by debinding and sintering operations, which result in shrinkage and variations in surface finish and structure. The stages of the process chain such as solvent/thermal debinding (TD), to remove the polymeric binder, and presintering (PS), to achieve a mild structural rigidity before the sintering, are of critical importance to achieve the surface and structural properties of high aspect ratio microparts and have not been yet studied in case of micro-extrusion of feedstock. In this study, the effect of debinding and PS on surface and structural properties of bi-lumen tubes processed at different extrusion conditions is discussed. Surface roughness of the tubes is analyzed using three-dimensional microscopy, and structural properties are studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The debinding and PS experiments on extruded microbi-lumen tubes retained very good surfaces integrity without any cracks or defects. The study shows that the interactions of extrusion temperature and extrusion velocity influence the surface finish of the extruded tubes the most. The sintered bi-lumen samples showed a good areal surface finish, Sa of 2.21 μ m, which is near to the green state value confirming the suitability of the applied debinding and PS parameters.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. June 2020, 8(2): 024503.
Paper No: JMNM-19-1051
Published Online: March 27, 2020
Abstract
Application of liquid carbon dioxide to improve cutting performance in micro-end milling of Ti-6Al-4V titanium alloy was proposed in this study. It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting, when a 0.5 mm diameter end milling cutter was used in dry cutting. But, the tiny and shattered chips produced by the use of 0.3 mm diameter cutter could adhere on the machined surface and deteriorate surface finish, if the cutting speed was higher than 40 m/min. Cutting temperature was effectively decreased by applying liquid carbon dioxide during micromilling, which in turn reduced the amount of chips adhering on the machined surface and lowered flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μ m under dry cutting to 0.04 μ m under the liquid carbon dioxide assisted cutting condition. And there were no flank wear and very few burrs left on the machined surface for the condition used in the experiment. The height of the burrs was only 25% of that under dry cutting. More, minimum quantity lubrication (MQL) was proposed to be applied together with the liquid carbon dioxide to enhance lubrication effect. It was noted that the machined surface roughness was further decreased by 15% as compared with that when the liquid carbon dioxide was applied alone. The height of burrs was reduced from 32 μ m to 16 μ m.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2020, 8(1): 011001.
Paper No: JMNM-18-1030
Published Online: February 19, 2020
Abstract
Microfluidics is one of the rapidly growing markets in the present era of miniaturization. Microchannels have wide applications in various fields such as biomedical, mechanical, electrical, and chemical sciences. Machining microfeatures with high aspect ratio in metals is difficult by mechanical and lithography-based processes. Micro-electric discharge milling is a suitable process to machine microcavities and microchannels in all electrically conductive materials. The main disadvantage of this process is its very low material removal rate. Improving the machining performance of micro-electric discharge machining ( μ EDM) is a research area that attracts researchers and remains as an unfulfilled agenda. The aim of this study is to improve the machining performance of micro-electric discharge milling process by investigating the performance of cryogenically treated tool and workpiece materials. Since surface roughness determines the minimum feature size machinable by any micromachining process and also it is an important factor in determining the flow characteristics of microchannels, a detailed comparative study was conducted on the three-dimensional (3D) surface quality parameters along with machining performance while using all four different combinations of untreated and cryogenically treated tool and workpiece, and the roughness parameters are correlated with the erosion behavior. The study revealed significant change in material removal rate and erosion pattern due to cryogenic treatment.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. March 2020, 8(1): 010906.
Paper No: JMNM-19-1062
Published Online: February 13, 2020
Abstract
Electrical discharge machining (EDM) causes surface defects such as resolidified layer and microcracks, and a finishing process is usually needed to remove these defects. In this paper, a hybrid process was proposed where electrochemical machining (ECM) was performed as a finishing process after EDM using the same tool electrode on the same machine. By using two kinds of disk-type rotary electrodes, rectangular grooves and grooves with convex inner structures were fabricated. Surface topography were investigated by using scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDX), and laser-probe surface profilometer. The material removal mechanism of resolidified layers was clarified. The surface roughness of the rectangular groove was improved from 3.82 μ m Ra to 0.86 μ m Ra after ECM. Electrode rotation was effective for flushing electrolytic products when fabricating inner structures. As there is no need for exchanging tools and machines, tool alignment error can be prevented and productivity can be improved. Therefore, the proposed EDM/ECM hybrid process contributes to rapid fabrication of microscale products with high surface integrity.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. June 2019, 7(2): 024503.
Paper No: JMNM-18-1039
Published Online: July 25, 2019
Abstract
Despite the recent developments of ductile mode machining, microgrinding of bioceramics can cause an insufficient surface and subsurface integrity due to the inherent hardness and brittleness of such materials. This work aims to determine the influence of a two-step grinding operation on zirconia-based ceramics. In this regard, zirconia (ZrO 2 ) and zirconia toughened alumina (ZTA) specimens are ground with ultrasonic vibration assistance within a variation of the machining parameters using two grinding steps and different diamond grain sizes of the tools in each of the machining procedure. White light interferometry, scanning electron microscope, X-ray diffraction (XRD), and four-point bending tests are performed to evaluate surface roughness, microstructure, residual stresses, and flexural strength, respectively. The strategy applied suggests that the finished parts are suitable for certain biomedical uses like dental implants due to their optimum surface roughness. Moreover, concerning the mechanical properties, an increase of the flexural strength and compressive residual stresses of ground ZrO 2 and ZTA workpieces were observed in comparison to the as-received specimens. These results, as well as the methodology proposed to investigate the surface integrity of the ground workpieces, are helpful to understand the bioceramic materials response under microgrinding conditions and to set further machining investigations.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. June 2019, 7(2): 024506.
Paper No: JMNM-18-1044
Published Online: July 25, 2019
Abstract
Pure titanium is the ideal metallic material to be used for producing dental implants due to its good corrosion resistance and biocompatibility. However, pure titanium does not present high mechanical resistance, which can be a limiting factor. Recently, the pure titanium is being replaced by titanium alloy with aluminum and vanadium (Ti–6Al–4V). This study deals with micromilling machinability of pure titanium and Ti–6Al–4V considering mechanical properties, the forces measured during the process, surface roughness, top burr height, and chips morphology. The cutting tests are performed for the constant depth of cut and cutting speed, and a range of feed per tooth from 0.5 to 4.0 μ m/tooth. Results show no significant differences in roughness and burr formation, whereas higher forces are found for the titanium alloy compared to pure metal. Both materials produce long chips for smaller feeds.
Journal Articles
Article Type: Technical Briefs
J. Micro Nano-Manuf. June 2019, 7(2): 024501.
Paper No: JMNM-18-1037
Published Online: July 25, 2019
Abstract
Metal additive manufacturing (AM) has been attracting attention as a new manufacturing method, but a surface finishing process is usually needed to improve the surface quality. As a new surface finishing process, ultrasonic vibration-assisted burnishing (UVAB) is promising. In this study, UVAB was performed on an additive-manufactured AlSi10 Mg workpiece to improve its surface/subsurface integrity. The effects of ultrasonic vibration (UV) and lateral tool pass width on the burnishing performance were investigated. It was observed that the surface roughness, filling ratio, and hardness of the surface layer were simultaneously improved after burnishing. This study shows the effectiveness of applying UVAB to improve the surface quality of additive-manufactured products for various industrial uses.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2019, 7(1): 011003.
Paper No: JMNM-18-1067
Published Online: May 15, 2019
Abstract
This paper presents the development of a prototype exfoliation tool and process for the fabrication of thin-film, single crystal silicon, which is a key material for creating high-performance flexible electronics. The process described in this paper is compatible with traditional wafer-based, complementary metal–oxide–semiconductor (CMOS) fabrication techniques, which enables high-performance devices fabricated using CMOS processes to be easily integrated into flexible electronic products like wearable or internet of things devices. The exfoliation method presented in this paper uses an electroplated nickel tensile layer and tension-controlled handle layer to propagate a crack across a wafer while controlling film thickness and reducing the surface roughness of the exfoliated devices as compared with previously reported exfoliation methods. Using this exfoliation tool, thin-film silicon samples are produced with a typical average surface roughness of 75 nm and a thickness that can be set anywhere between 5 μ m and 35 μ m by changing the exfoliation parameters.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2019, 7(1): 010904.
Paper No: JMNM-18-1052
Published Online: April 11, 2019
Abstract
Additive manufacturing (AM) of metal offers matchless design sovereignty to manufacture metallic microcomponents from a wide range of materials. Green-state micromilling is a promising method that can be integrated into the AM of metallic feedstock microcomponents in typical extrusion-based AM methods for compensating the inability to generate microfeatures. The integration enables the manufacturing of complex geometries, the generation of good surface quality, and can provide exceptional flexibility to new product shapes. This work is a micromachinability study of AISI316 L feedstock components produced by extrusion-based AM where the effects of workpiece temperature and the typical micromilling parameters such as cutting speed, feed per tooth, axial depth of cut, and air supply are studied. Edge integrity and surface roughness of the machined slots, as well as cutting forces, are analyzed using three-dimensional microscopy and piezoelectric force sensor, respectively. Green-state micromilling results were satisfying with good produced quality. The micromilling of heated workpieces (45 °C), with external air supply for debris removal, showed the best surface quality with surface roughness values that reached around Sa = 1.5 μ m, much smaller than the average metal particles size. Minimum tendency to borders breakage was showed but in some cases microcutting was responsible of the generation of surface defects imputable to lack of adhesion of deposited layers. Despite this fact, the integrability of micromilling into extrusion-based AM cycles of metallic feedstock is confirmed.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2019, 7(1): 010906.
Paper No: JMNM-18-1035
Published Online: April 11, 2019
Abstract
During large-area electron beam irradiation, high energy flux pulses of electrons melt a thin layer of material. The objective of this work is to analyze the spatial frequencies of a turned, S7 tool steel surface before and after electron beam melting. It was observed that high frequency features are significantly reduced following melting, but lower frequency features were created and increased the unfiltered areal average roughness. Previous work on laser remelting-based polishing derived a critical frequency that defines the frequency above which higher frequency features are dampened. As the critical frequency depends on the melt duration that the surface experiences, a one-dimensional, transient temperature prediction model was created for this work to estimate the melt time for a single electron beam pulse. This model allowed for the calculation of a critical frequency that showed good ability to predict the frequencies that are dampened.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2019, 7(1): 010903.
Paper No: JMNM-18-1048
Published Online: April 11, 2019
Abstract
The capability to manufacture high-precision components with microscale features is enhanced by the combination of different micromanufacturing processes in a single process chain. This study explores an effective process chain that combines micro-abrasive water jet ( μ -AWJ) and microwire electrical discharge machining ( μ -WEDM) technologies. An experimental spring component is chosen as a leading test case, since fine geometric features machining and low roughness on the cut walls are required. The advantages deriving from the two technologies combination are discussed in terms of machining time, surface roughness, and feature accuracy. First, the performances of both processes are assessed by experimentation and discussed. Successively, different process chains are conceived for fabricating two test cases with different sizes, displaying some useful indications that can be drawn from this experience.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2019, 7(1): 010907.
Paper No: JMNM-18-1053
Published Online: April 11, 2019
Abstract
This paper presents a simulation study toward analyzing the effect of radial throw in micromilling on quality metrics and on the deviation in tool-tip trajectory from its prescribed pattern. Both the surface location error (SLE) and the sidewall (peripheral) surface roughness are analyzed. The deviation in tool-tip trajectory is evaluated considering the flute-to-flute variations in the uncut chip thickness and changes in the tooth spacing angle. Radial throw indicates the instantaneous radial location of the tool axis, thereby capturing all salient features of tool-tip trajectory deviations, such as the general elliptical form of the radial motions. This is in contrast to the concept of run-out, which is a scalar quantity (total indicator reading) indicating the total displacement or change in the radial throw measured from a perfect cylindrical surface for one complete rotation of the axis. As such, measurement and analysis of radial throw is essential to understanding micromachining processes. In our previous work, we described an experimental approach for accurate determination of radial throw when using ultra-high-speed micromachining spindles. In this work, we present a simulation-based study to relate radial throw parameters and form to SLE, sidewall surface roughness, flute-to-flute variations of uncut chip thickness, and changes in tooth spacing angle for a two fluted micro-endmill. As expected, our study concludes that the magnitude, orientation, and form of radial throw all significantly affect the studied quality metrics, tooth spacing angle, and the flute-to-flute chip thickness variations. Specifically, the presence of radial throw with an elliptical form induces up to 50% variation in SLE, up to 20% variation in sidewall surface roughness, up to 60% variation in tooth spacing angle deviations, and up to 50% variation in flute-to-flute chip thickness. As such, the presented simulation approach can be used to assess the direct (kinematic) effects of the radial throw parameters on the quality metrics and chip thickness variations.
Journal Articles
Molla Hasan, Imrhankhan Shajahan, Manesh Gopinadhan, Jittisa Ketkaew, Aaron Anesgart, Chloe Cho, Saransh Chopra, Michael Higgins, Saira Reyes, Jan Schroers, Chinedum O. Osuji, Jonathan P. Singer
Article Type: Research-Article
J. Micro Nano-Manuf. December 2018, 6(4): 041003.
Paper No: JMNM-18-1027
Published Online: October 16, 2018
Abstract
We report the tuning of surface wetting through sacrificial nanoimprint lithography (SNIL). In this process, grown ZnO nanomaterials are transferred by imprint into a metallic glass (MG) and an elastomeric material, and then etched to impart controlled surface roughness. This process increases the hydrophilicity and hydrophobicity of both surfaces, the Pt 57.5 Cu 14.7 Ni 5.3 P 22.5 MG and thermoplastic elastomer (TPE), respectively. The growth conditions of the ZnO change the characteristic length scale of the roughness, which in turn alters the properties of the patterned surface. The novelty of this approach includes reusability of templates and that it is able to create superhydrophilic and superhydrophobic surfaces in a manner compatible with the fabrication of macroscopic three-dimensional (3D) parts. Because the wettability is achieved by only modifying topography, without using any chemical surface modifiers, the prepared surfaces are relatively more durable.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. June 2018, 6(2): 021005.
Paper No: JMNM-17-1045
Published Online: March 20, 2018
Abstract
Miniaturization of components is one of the major demands of the today's technological advancement. Microslots are one of the widely used microfeature found in various industries such as automobile, aerospace, fuel cells and medical. Surface roughness of the microslots plays critical role in high precision applications such as medical field (e.g., drug eluting stent and microfilters). In this paper, abrasive flow finishing (AFF) process is used for finishing of the microslots (width 450 μ m) on surgical stainless steel workpiece that are fabricated by electrical discharge micromachining (EDμM). AFF medium is developed in-house and used for performing microslots finishing experiments. Developed medium not only helps in the removal of hard recast layer from the workpiece surfaces but also provides nano surface roughness. Parametric study of microslots finishing by AFF process is carried out with the help of central composite rotatable design (CCRD) method. The initial surface roughness on the microslots wall is in the range of 3.50 ± 0.10 μ m. After AFF, the surface roughness is reduced to 192 nm with a 94.56% improvement in the surface roughness. To understand physics of the AFF process, three-dimensional (3D) finite element (FE) viscoelastic model of the AFF process is developed. Later, a surface roughness simulation model is also proposed to predict the final surface roughness after the AFF process. Simulated results are in good agreement with the experimental results.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2018, 6(1): 011004.
Paper No: JMNM-17-1041
Published Online: December 14, 2017
Abstract
Reliability aspects are crucial for the success of every technology in industrial application. Regarding interconnect devices, several methods are applied to evaluate reliability of conductor paths like accelerated environmental tests. Especially, molded interconnect devices (MID), which enable numerous applications with three-dimensional (3D) circuitry on 3D shaped injection-molded thermoplastic parts are often under particular stress, e.g., as component of a housing. In this study, a new test method for evaluating the flexural fatigue strength of conductor paths produced by the laser-based LPKF-LDS ® technology is presented. For characterization of test samples, a test bench for flexural fatigue test was built up. A result of the flexural fatigue test is a characteristic Woehler curve of the metal layer system. Applying this new test method, essential influencing parameters on the reliability of MID under mechanical load can be identified. So, the metal layer system as well as the geometric parameters of the metal layer is crucial for the performance. Furthermore, test specimens are tested under different types of mechanical load, i.e., tensile stress and compressive stress. For a holistic view on reliability of MID, experimental results are discussed and supported by simulations. An important finding of the study is the advantage of nickel-free layer systems in contrast to the Cu/Ni/Au layer system, which is often used in MID technology.