Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-2 of 2
Surface finishing
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Errata
J. Micro Nano-Manuf. September 2018, 6(3): 037001.
Paper No: JMNM-18-1004
Published Online: May 3, 2018
Journal Articles
Ninggang Shen, Hongtao Ding, Robert Bowers, Yin Yu, Chelsey N. Pence, Ibrahim T. Ozbolat, Clark M. Stanford
Article Type: Research-Article
J. Micro Nano-Manuf. March 2015, 3(1): 011005.
Paper No: JMNM-14-1040
Published Online: March 1, 2015
Abstract
Pure titanium is an ideal material for biomedical implant applications for its superior biocompatibility, but it lacks of the mechanical strength required in these applications compared with titanium alloys. This research is concerned with an innovative laser peening-based material process to improve the mechanical strength and cell attachment property of pure titanium in biomedical applications. Evidence has shown that engineered surface with unsmooth topologies will contribute to the osteoblast differentiation in human mesenchymal pre-osteoblastic cells, which is helpful to avoid long-term peri-abutment inflammation issues for the dental implant therapy with transcutaneous devices. However, surface quality is difficult to control or mechanical strength is not enhanced using conventional approaches. In this paper, a novel high energy pulse laser peening (HEPLP) process is proposed to both improve the mechanical strength and introduce a micropattern into the biomedical implant material of a commercially pure Titanium (cpTi). The strong shock wave generated by HEPLP presses a stainless steel grid, used as a stamp, on cpTi foils to imprint a micropattern. To understand the basic science during the process, the HEPLP induced shock wave pressure profile and history are modeled by a multiphysics hydrodynamic numerical analysis. The micropatterns and strength enhancement are then simulated using a dislocation density-based finite element (FE) framework. Finally, cell culture tests are conducted to investigate the biomedical performance of the patterned surface.