Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-6 of 6
Computer simulation
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2021, 9(1): 011001.
Paper No: JMNM-20-1053
Published Online: February 19, 2021
Abstract
Electrohydrodynamic (EHD) printing is an alternative method to fabricate high-resolution micro- and nanostructures with high efficiency, low cost, and low pollution. Numerical simulation is an effective approach to systematically investigate the formation process of EHD jet. However, there are a few articles performing this work. In this study, a finite element model was established. The jet formation process and jetting modes were analyzed. The influence of applied voltage and printing distance on the maximum electric field near the nozzle tip was investigated. The effect of flow rate on the jet diameters was studied. Comparison between numerical and experimental results demonstrated that the proposed simulation model had a high potential for EHD jet analysis. According to the optimized printing conditions (printing distance of 200–300 μ m, applied voltage of ∼1100 V, and flow rate of 0.1–0.3 ml/h), stable EHD jet can generate and polyvinyl pyrrolidone (PVP) lines with minimum line-width of 0.9 μ m can be printed onto the glass slide.
Journal Articles
Article Type: Guest Editorial
J. Micro Nano-Manuf. March 2019, 7(1): 010301.
Paper No: JMNM-19-1015
Published Online: May 17, 2019
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. December 2017, 5(4): 040904.
Paper No: JMNM-17-1026
Published Online: September 27, 2017
Abstract
Multiscale and multimaterial three-dimensional (3D) printing is new frontier in additive manufacturing (AM). It has shown great potential to implement the simultaneous and full control for fabricated object including external geometry, internal architecture, functional surface, material composition and ratio as well as gradient distribution, feature size ranging from nano-, micro-, to macro-scale, embedded components and electrocircuit, etc. Furthermore, it has the ability to construct the heterogeneous and hierarchical structured object with tailored properties and multiple functionalities which cannot be achieved through the existing technologies. That paves the way and may result in great breakthrough in various applications, e.g., functional tissue and organ, functionally graded (FG) material/structure, wearable devices, soft robot, functionally embedded electronics, metamaterial, multifunctionality product, etc. However, very few of the established AM processes have now the capability to implement the multimaterial and multiscale 3D printing. This paper presented a single nozzle-based multiscale and multimaterial 3D printing process by integrating the electrohydrodynamic jet printing and the active mixing multimaterial nozzle. The proposed AM technology has the capability to create multifunctional heterogeneously structured objects with control of the macroscale external geometry and microscale internal structures as well as functional surface features, particularly, the potential to dynamically mix, grade, and vary the ratios of different materials. An active mixing nozzle, as a core functional component of the 3D printer, is systematically investigated by combining with the theoretical analysis, numerical simulation, and experimental verification. The study aims at exploring a feasible solution to implement the multiscale and multimaterial 3D printing at low cost.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. March 2015, 3(1): 011006.
Paper No: JMNM-14-1027
Published Online: March 1, 2015
Abstract
Conventional material models cannot describe material behaviors precisely in micro/mesoscale due to the size/scale effects. In micro/mesoscale forming process, the reaction force, localized stress concentration, and formability are not only dependent on the strain distribution and strain path but also on the strain gradient and strain gradient path caused by decreased scale. This study presented an analytical model based on the conventional mechanism of strain gradient (CMSG) plasticity. Finite element (FE) simulations were performed to study the effects of the width of microchannel features. Die sets were fabricated and micro/mesoscale sheet forming experiments were conducted. The results indicated that the CMSG plastic theory achieves better agreements compared to the conventional plastic theory. It was also found that the influence of strain gradient on the forming process increases with the decrease of the geometrical parameters of tools. Furthermore, the feature size effects in the forming process were evaluated and quantitated by the similarity difference and the similarity accuracy. Various tool geometrical parameters were designed based on the Taguchi method to explore the influence of the strain gradient caused by the decrease of tool dimension. According to the scale law, the difference and accuracy of similarity were calculated. Greater equivalent strain gradient was revealed with the decrease of tool dimension, which led to the greater maximum reaction force error due to the increasing size effects. The main effect plots for equivalent strain gradient and reaction force indicated that the influence of tools clearance is greater than those of punch radius, die radius, and die width.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. September 2014, 2(3): 031003.
Paper No: JMNM-14-1011
Published Online: July 8, 2014
Abstract
Plasmonic lithography may become a mainstream nanofabrication technique in the future. Experimental results show that feature size with 22 nm resolution can be achieved by plasmonic lithography. In the experiment, a plasmonic lens (PL) is used to focus the laser energy with resolution much higher than the diffraction limit and features are created in the thermally sensitive phase-change material (PCM) layer. The energy transport mechanisms are still not fully understood in the lithography process. In order to predict the lithography resolution and explore the energy transport mechanisms involved in the process, customized electromagnetic wave (EMW) and heat transfer (HT) models were developed in comsol. Parametric studies on both operating parameters and material properties were performed to optimize the lithography process. The parametric studies show that the lithography process can be improved by either reducing the thickness of the phase-change material layer or using a material with smaller real refractive index for that layer.
Journal Articles
Article Type: Research-Article
J. Micro Nano-Manuf. June 2013, 1(2): 021004.
Paper No: JMNM-12-1028
Published Online: May 2, 2013
Abstract
Superabrasive microgrinding wheels are used for jig grinding of microstructures using various grinding approaches. The desire for increased final geometric accuracy in microgrinding leads to the need for improved process modeling and understanding. An improved understanding of the source of wheel topography characteristics leads to better knowledge of the interaction between the individual grits on the wheel and the grinding workpiece. Analytic stochastic modeling of the abrasives in a general grinding wheel is presented as a method to stochastically predict the wheel topography. The approach predicts the probability of the number of grits within a grind wheel, the individual grit locations within a given wheel structure, and the static grit density within the wheel. The stochastic model is compared to numerical simulations that imitate both the assumptions of the analytic model where grits are allowed to overlap and the more realistic scenario of a grind wheel where grits cannot overlap. A new technique of grit relocation through collective rearrangement is used to limit grit overlap. The results show that the stochastic model can accurately predict the probability of the static grit density while providing results two orders of magnitude faster than the numerical simulation techniques. It is also seen that grit overlap does not significantly impact the static grit density allowing for the simpler, faster analytic model to be utilized without sacrificing accuracy.