Abstract

The synthesis of vertically aligned carbon nanotubes (CNTs), also referred to as CNT forest, by chemical vapor deposition (CVD) is an intricate process that is sensitive to multiple factors other than control of temperature, pressure, and gas flows. In particular, growth is highly sensitive to factors like ambient humidity, as well as small quantities of oxygen-containing species and carbon deposits inside the reactor. These typically uncontrolled factors significantly affect growth reproducibility and hinders the fundamental study of process–structure–property relationship for these emerging materials. Accordingly, universally applicable design modifications and process steps toward improving growth consistency are sought after. In this study, we introduce two new modifications to our custom-designed multizone rapid thermal CVD reactor and demonstrate their impact on growth: (1) reconfiguring the inlet gas plumbing to add a gas purifier to the helium (He) line, and (2) designing a new support wafer for consistent loading of substrates. We use statistical analysis to test the effectiveness of these modifications in improving growth and reducing variability of both CNT forest height and density. Analysis of our experimental results and hypothesis testing show that combining the implementation of He purifier with the redesigned support wafer increases forest height and reduces the variability in height (17-folds), both at statistically significant and practically significant levels.

References

1.
Bedewy
,
M.
,
Meshot
,
E. R.
,
Guo
,
H.
,
Verploegen
,
E. A.
,
Lu
,
W.
, and
Hart
,
A. J. J.
,
2009
, “
Collective Mechanism for the Evolution and Self-Termination of Vertically Aligned Carbon Nanotube Growth
,”
J. Phys. Chem. C
,
113
(
48
), pp.
20576
20582
.10.1021/jp904152v
2.
Bedewy
,
M.
,
Meshot
,
E. R.
,
Reinker
,
M. J.
, and
Hart
,
A. J.
,
2011
, “
Population Growth Dynamics of Carbon Nanotubes
,”
ACS Nano
,
5
(
11
), pp.
8974
8989
.10.1021/nn203144f
3.
Bedewy
,
M.
,
Viswanath
,
B.
,
Meshot
,
E. R.
,
Zakharov
,
D. N.
,
Stach
,
E. A.
, and
Hart
,
A. J.
,
2016
, “
Measurement of the Dewetting, Nucleation, and Deactivation Kinetics of Carbon Nanotube Population Growth by Environmental Transmission Electron Microscopy
,”
Chem. Mater.
,
28
(
11
), pp.
3804
3813
.10.1021/acs.chemmater.6b00798
4.
Balakrishnan
,
V.
,
Bedewy
,
M.
,
Meshot
,
E. R.
,
Pattinson
,
S. W.
,
Polsen
,
E. S.
,
Laye
,
F.
,
Zakharov
,
D. N.
,
Stach
,
E. A.
, and
Hart
,
A. J.
,
2016
, “
Real-Time Imaging of Self-Organization and Mechanical Competition in Carbon Nanotube Forest Growth
,”
ACS Nano
,
10
(
12
), pp.
11496
11504
.10.1021/acsnano.6b07251
5.
Tong
,
T.
,
Zhao
,
Y.
,
Delzeit
,
L.
,
Kashani
,
A.
,
Meyyappan
,
M.
, and
Majumdar
,
A.
,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.10.1109/TCAPT.2007.892079
6.
Majumder
,
M.
,
Chopra
,
N.
,
Andrews
,
R.
, and
Hinds
,
B. J.
,
2005
, “
Enhanced Flow in Carbon Nanotubes
,”
Nature
,
438
(
7064
), pp.
44
44
.10.1038/438044a
7.
Wei
,
B. Q.
,
Vajtai
,
R.
, and
Ajayan
,
P. M.
,
2001
, “
Reliability and Current Carrying Capacity of Carbon Nanotubes
,”
Appl. Phys. Lett.
,
79
(
8
), pp.
1172
1174
.10.1063/1.1396632
8.
Pander
,
A.
,
Hatta
,
A.
, and
Furuta
,
H.
,
2016
, “
Optimization of Catalyst Formation Conditions for Synthesis of Carbon Nanotubes Using Taguchi Method
,”
Appl. Surf. Sci.
,
371
, pp.
425
435
.10.1016/j.apsusc.2016.02.216
9.
In
,
J. B.
,
Grigoropoulos
,
C. P.
,
Chernov
,
A. A.
, and
Noy
,
A.
,
2011
, “
Hidden Role of Trace Gas Impurities in Chemical Vapor Deposition Growth of Vertically-Aligned Carbon Nanotube Arrays
,”
Appl. Phys. Lett.
,
98
(
15
), p.
153102
.10.1063/1.3573830
10.
In
,
J. B.
,
Grigoropoulos
,
C. P.
,
Chernov
,
A. A.
, and
Noy
,
A.
,
2011
, “
Growth Kinetics of Vertically Aligned Carbon Nanotube Arrays in Clean Oxygen-Free Conditions
,”
ACS Nano
,
5
(
12
), pp.
9602
9610
.10.1021/nn2028715
11.
Oliver
,
C. R.
,
Polsen
,
E. S.
,
Meshot
,
E. R.
,
Tawfick
,
S.
,
Park
,
S. J.
,
Bedewy
,
M.
, and
Hart
,
A. J.
,
2013
, “
Statistical Analysis of Variation in Laboratory Growth of Carbon Nanotube Forests and Recommendations for Improved Consistency
,”
ACS Nano
,
7
(
4
), pp.
3565
3580
.10.1021/nn400507y
12.
Li
,
J.
,
Bedewy
,
M.
,
White
,
A. O.
,
Polsen
,
E. S.
,
Tawfick
,
S.
, and
John Hart
,
A.
,
2016
, “
Highly Consistent Atmospheric Pressure Synthesis of Carbon Nanotube Forests by Mitigation of Moisture Transients
,”
J. Phys. Chem. C
,
120
(
20
), pp.
11277
11287
.10.1021/acs.jpcc.6b02878
13.
Shi
,
W.
,
Li
,
J.
,
Polsen
,
E. S.
,
Oliver
,
C. R.
,
Zhao
,
Y.
,
Meshot
,
E. R.
,
Barclay
,
M.
,
Fairbrother
,
D. H.
,
Hart
,
A. J.
, and
Plata
,
D. L.
,
2017
, “
Oxygen-Promoted Catalyst Sintering Influences Number Density, Alignment, and Wall Number of Vertically Aligned Carbon Nanotubes
,”
Nanoscale
,
9
(
16
), pp.
5222
5233
.10.1039/C6NR09802A
14.
Carpena-Núñez
,
J.
,
Anibal Boscoboinik
,
J.
,
Saber
,
S.
,
Rao
,
R.
,
Zhong
,
J.-Q.
,
Maschmann
,
M. R.
,
Kidambi
,
P. R.
,
Dee
,
N. T.
,
Zakharov
,
D. N.
,
John Hart
,
A.
,
Stach
,
E. A.
, and
Maruyama
,
B.
,
2019
, “
Isolating the Roles of Hydrogen Exposure and Trace Carbon Contamination on the Formation of Active Catalyst Populations for Carbon Nanotube Growth
,”
ACS Nano
,
13
(
8
), pp.
8736
8748
.10.1021/acsnano.9b01382
15.
Dee
,
N. T.
,
Li
,
J.
,
Orbaek White
,
A.
,
Jacob
,
C.
,
Shi
,
W.
,
Kidambi
,
P. R.
,
Cui
,
K.
,
Zakharov
,
D. N.
,
Janković
,
N. Z.
,
Bedewy
,
M.
,
Chazot
,
C. A. C.
,
Carpena-Núñez
,
J.
,
Maruyama
,
B.
,
Stach
,
E. A.
,
Plata
,
D. L.
, and
Hart
,
A. J.
,
2019
, “
Carbon-Assisted Catalyst Pretreatment Enables Straightforward Synthesis of High-Density Carbon Nanotube Forests
,”
Carbon
,
153
, pp.
196
205
.10.1016/j.carbon.2019.06.083
16.
Youn
,
S. K.
,
Frouzakis
,
C. E.
,
Gopi
,
B. P.
,
Robertson
,
J.
,
Teo
,
K. B. K.
, and
Park
,
H. G.
,
2013
, “
Temperature Gradient Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
,”
Carbon
,
54
, pp.
343
352
.10.1016/j.carbon.2012.11.046
17.
Yang
,
N.
,
Youn
,
S. K.
,
Frouzakis
,
C. E.
, and
Park
,
H. G.
,
2018
, “
An Effect of Gas-Phase Reactions on the Vertically Aligned CNT Growth by Temperature Gradient Chemical Vapor Deposition
,”
Carbon
,
130
, pp.
607
613
.10.1016/j.carbon.2018.01.072
18.
Qi
,
H.
,
Yuan
,
D.
, and
Liu
,
J.
,
2007
, “
Two-Stage Growth of Single-Walled Carbon Nanotubes
,”
J. Phys. Chem. C
,
111
(
17
), pp.
6158
6160
.10.1021/jp071448q
19.
Amama
,
P. B.
,
Pint
,
C. L.
,
McJilton
,
L.
,
Kim
,
S. M.
,
Stach
,
E. A.
,
Murray
,
P. T.
,
Hauge
,
R. H.
, and
Maruyama
,
B.
,
2009
, “
Role of Water in Super Growth of Single-Walled Carbon Nanotube Carpets
,”
Nano Lett.
,
9
(
1
), pp.
44
49
.10.1021/nl801876h
20.
Lee
,
J.
,
Abdulhafez
,
M.
, and
Bedewy
,
M.
,
2019
, “
Data Analytics Enables Significant Improvement of Robustness in Chemical Vapor Deposition of Carbon Nanotubes Based on Vacuum Baking
,”
Ind. Eng. Chem. Res.
,
58
(
27
), pp.
11999
12009
.10.1021/acs.iecr.9b01725
21.
R.
Doering
, and
Y.
Nishi
, eds.,
2007
,
Handbook of Semiconductor Manufacturing Technology
,
Taylor and Francis
, London, UK.
22.
Lee
,
J.
,
Abdulhafez
,
M.
, and
Bedewy
,
M.
,
2019
, “
Multizone Rapid Thermal Processing to Overcome Challenges in Carbon Nanotube Manufacturing by Chemical Vapor Deposition
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), p.
091006
.10.1115/1.4044104
23.
Lee
,
J.
,
Abdulhafez
,
M.
, and
Bedewy
,
M.
,
2019
, “
Decoupling Catalyst Dewetting, Gas Decomposition, and Surface Reactions in Carbon Nanotube Forest Growth Reveals Dependence of Density on Nucleation Temperature
,”
J. Phys. Chem. C
,
123
(
47
), pp.
28726
28738
.10.1021/acs.jpcc.9b07894
24.
Meshot
,
E. R.
,
Plata
,
D. L.
,
Tawfick
,
S.
,
Zhang
,
Y.
,
Verploegen
,
E. A.
, and
Hart
,
A. J.
,
2009
, “
Engineering Vertically Aligned Carbon Nanotube Growth by Decoupled Thermal Treatment of Precursor and Catalyst
,”
ACS Nano
,
3
(
9
), pp.
2477
2486
.10.1021/nn900446a
25.
Marwick
,
B.
, and
Krishnamoorthy
,
K.
,
2019
, “
Cvequality: Tests for the Equality of Coefficients of Variation From Multiple Groups, R Software Package Version 0.1.3
,” accessed Feb. 22, 2021, https://github.com/benmarwick/cvequality
26.
Feltz
,
C. J.
, and
Miller
,
G. E.
,
1996
, “
An Asymptotic Test for the Equality of Coefficients of Variation From k Populations
,”
Stat. Med.
,
15
(
6
), pp.
647
658
.10.1002/(SICI)1097-0258(19960330)15:6<647::AID-SIM184>3.0.CO;2-P
27.
Krishnamoorthy
,
K.
, and
Lee
,
M.
,
2014
, “
Improved Tests for the Equality of Normal Coefficients of Variation
,”
Comput. Stat.
,
29
(
1–2
), pp.
215
232
.10.1007/s00180-013-0445-2
28.
Abdulhafez
,
M.
,
Lee
,
J.
, and
Bedewy
,
M.
,
2020
, “
In Situ Measurement of Carbon Nanotube Growth Kinetics in a Rapid Thermal Chemical Vapor Deposition Reactor With Multizone Infrared Heating
,”
ASME J. Micro Nano-Manuf.
,
8
(
1
), p. 010902.10.1115/1.4046033
You do not currently have access to this content.