Abstract

Atomized dielectric-based electrical discharge machining (EDM) is a novel machining process in which a thin film of moving fluid resulting from a spray acts as the dielectric in the interelectrode gap. In addition to acting as the dielectric, the thin film also helps to flush the debris away from EDM crater features and requires very small quantity of fluid in doing so. This results in significantly less dielectric consumption compared to the conventional EDM while yielding higher material removal rates and better debris flushing. This paper presents a model-based investigation of the mechanism of debris flushing in atomized dielectric-based EDM. A material removal model is used to predict the amount of debris removed in terms of number of particles ejected during a single EDM discharge. The dielectric material properties and atomization spray parameters are varied in order to produce different ejection conditions and crater geometries, respectively. Particles are ejected from the bottom of crater geometries. The model captures the asymmetry in particle motion caused by the dielectric film flow and predicts the percentage of debris flushed away from the crater center. It is also observed that crater shape and size of debris particles play a role in the amount of debris flushed away.

References

References
1.
Uriarte
,
L.
,
Herrero
,
A.
,
Ivanov
,
A.
,
Oosterling
,
H.
,
Staemmler
,
L.
,
Tang
,
P. T.
, and
Allen
,
D.
,
2006
, “
Comparison Between Micro Fabrication Technologies for Metal Tooling
,”
Proc. IMechE
,
220
(
11
), pp.
1665
1676
.10.1243/09544062JMES220
2.
Houman
,
L.
,
1977
, “
How to Estimate EDM Time Requirements
,” Metal Stamping, Report No. 11–15.
3.
Lonardo
,
P.
, and
Bruzzone
,
A.
,
1999
, “
Effect of Flushing and Electrode Material on Die Sinking EDM
,”
CIRP Ann. Manuf. Technol
,
48
(
1
), pp.
123
126
.10.1016/S0007-8506(07)63146-1
4.
Wong
,
Y.
,
Lim
,
L.
, and
Lee
,
L.
,
1995
, “
Effects of Flushing on Electro-Discharge Machined Surfaces
,”
J. Mater. Process. Technol
,
48
(
1–4
), pp.
299
305
.10.1016/0924-0136(94)01662-K
5.
Tonshoff
,
H. K.
,
Egger
,
R.
, and
Klocke
,
F.
,
1996
, “
Environmental and Safety Aspects of Electrophysical and Electrochemical Processes
,”
CIRP Ann. Manuf. Technol
,
45
(
2
), pp.
553
568
.10.1016/S0007-8506(07)60510-1
6.
Pattabhiraman
,
A.
,
Marla
,
D.
, and
Kapoor
,
S. G.
,
2015
, “
Atomized Dielectric Spray-Based Electric Discharge Machining for Sustainable Manufacturing
,”
ASME J. Micro Nano-Manuf.
,
3
(
4
), p.
41008
.10.1115/1.4031666
7.
Tanveer
,
A.
,
Mujumdar
,
S. S.
, and
Kapoor
,
S. G.
,
2018
, “
Experimental Investigation of Atomized Dielectric-Based Electrical Discharge Machining (EDM)
,”
Proceedings of the WCMNM
,
Portorož, Slovenia
, Sept. 18–20.https://www.researchgate.net/publication/328100294_Experimental_Investigation_of_Atomized_Dielectric-based_Electrical_Discharge_Machining_EDM
8.
Masuzawa
,
T.
,
Cui
,
X.
, and
Taniguchi
,
N.
,
1992
, “
Improved Jet Flushing for EDM
,”
CIRP Ann. Manuf. Technol.
,
41
(
1
), pp.
239
242
.10.1016/S0007-8506(07)61194-9
9.
Takeuchi
,
H.
, and
Kuneida
,
H.
,
2007
, “
Relation Between Debris Concentration and Discharge Machining
,”
Int. J. Elec. Mach.
,
12
, pp.
17
22
.https://www.jstage.jst.go.jp/article/ijem/12/0/12_17/_pdf
10.
Rajurkar
,
K. P.
, and
Pandit
,
S. M.
,
1986
, “
Formation and Ejection of Debris
,”
ASME J. Eng. Ind.
,
108
(
1
), pp.
22
26
.10.1115/1.3187036
11.
Zhang
,
S.
,
Zhang
,
W.
,
Chang
,
H.
,
Liu
,
Y.
,
Ma
,
F.
,
Yang
,
D.
, and
Sha
,
Z.
,
2019
, “
Study of the Thermal Erosion, Ejection and Solidification Processes of Electrode Materials During EDM
,”
Eng. App. Comput. Fluid Mech.
,
13
(
1
), pp.
1153
1164
.10.1080/19942060.2019.1676313
12.
Zhang
,
S.
,
Zhang
,
W.
,
Chang
,
H.
,
Liu
,
Y.
,
Ma
,
F.
,
Su
,
C.
, and
Sha
,
Z.
,
2017
, “
Study on the Gap Flow Simulation in EDM Small Hole Machining With Ti Alloy
,”
Adv. Mat. Sci. Eng.
,
2017
, pp.
1
23
.10.1155/2017/7961763
13.
Mastud
,
S. A.
,
Kothari
,
N. S.
,
Singh
,
R. K.
,
Samuel
,
J.
, and
Joshi
,
S. S.
,
2014
, “
Analysis of Debris Motion in Vibration Assisted Reverse Micro Electrical Discharge Machining
,”
ASME
Paper No. MSEC2014-4157.10.1115/MSEC2014-4157
14.
Mullya
,
S. A.
, and
Karthikeyan
,
G.
,
2018
, “
Dielectric Flow Observation at Inter-Electrode Gap in Micro-Electro-Discharge-Milling Process
,”
Proc Inst. Mech. Eng., Part B
,
232
(
6
), pp.
1079
1089
.10.1177/0954405416662082
15.
Pattabhiraman
,
A.
,
Marla
,
D.
, and
Kapoor
,
S. G.
,
2016
, “
A Computational Model to Study Film Formation and Debris Flushing Phenomena in Spray-Electric Discharge Machining
,”
ASME J. Micro Nano-Manuf.
,
4
(
3
), p.
031002
.10.1115/1.4033709
16.
ANSYS, Inc., “
ANSYS Fluent User's Guide, Discrete Phase Model
,” ANSYS Inc., Canonsburg, PA, Chap. 15.
17.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.10.1017/S0022112072001806
18.
Tanveer
,
M.
,
S. S.
, and
Kapoor
,
S. G.
,
2019
, “
Modeling of Material Removal in Atomized Dielectric-Based Electrical Discharge Machining (EDM)
,”
ASME
Paper No. MSEC2019-3025.10.1115/MSEC2019-3025
19.
Murray
,
J. W.
,
Sun
,
J.
,
Patil
,
D. V.
,
Wood
,
T. A.
, and
Clare
,
A. T.
,
2016
, “
Physical and Electrical Characteristics of EDM Debris
,”
J. Mat. Proc. Tech.
,
229
, pp.
54
60
.10.1016/j.jmatprotec.2015.09.019
20.
Mitra
,
S.
,
Vasa
,
N.
,
Rao
,
M.
, and
Singaperumal
,
M.
,
2010
, “
Investigation on Particle Generation by Micro-Electro Discharge Machining
,”
SPIE Proc.
7590, p. 75900J.10.1117/12.845709
21.
Mali
,
H.
, and
Kumar
,
N.
,
2016
,
Investigating Feasibility of Waste Vegetable Oil for Sustainable EDM
,
AIMTDR
,
Pune, India
, Dec. 16–18.
You do not currently have access to this content.