Abstract

Microwire microelectrode arrays (MEAs) are implanted in the brain for recording neuron activities to study the brain function. Among various microwire materials, carbon fiber stands out due to its small diameter (5–10 μm), relatively high Young's modulus, and low electrical resistance. Microwire tips in MEAs are often sharpened to reduce the insertion force and prevent the thin microwires from buckling. Currently, carbon fiber MEAs are sharpened by either torch burning, which limits the positions of wire tips to a water bath surface plane, or electrical discharge machining, which is difficult to implement to the nonelectrically conductive carbon fiber with parylene-C insulation. A laser-based carbon fiber sharpening method proposed in this study enables the fabrication of carbon fiber MEAs with sharp tips and custom lengths. Experiments were conducted to study effects of laser input voltage and transverse speed on carbon fiber tip geometry. Results of the tip sharpness and stripped length of the insulation as well as the electrochemical impedance spectroscopy measurement at 1 kHz were evaluated and analyzed. The laser input voltage and traverse speed have demonstrated to be critical for the sharp tip, short stripped length, and low electrical impedance of the carbon fiber electrode for brain recording MEAs. A carbon fiber MEA with custom electrode lengths was fabricated to validate the laser-based approach.

References

References
1.
Drachman
,
D. A.
,
2005
, “
Do We Have Brain to Spare?
,”
Neurology
,
64
(
12
), pp.
2004
2005
.10.1212/01.WNL.0000166914.38327.BB
2.
Henze
,
D. A.
,
Borhegyi
,
Z.
,
Csicsvari
,
J.
,
Mamiya
,
A.
,
Harris
,
K. D.
, and
Buzsáki
,
G.
,
2000
, “
Intracellular Features Predicted by Extracellular Recordings in the Hippocampus In Vivo
,”
J. Neurophysiol.
,
84
(
1
), pp.
390
400
.10.1152/jn.2000.84.1.390
3.
Burle
,
B.
,
Spieser
,
L.
,
Roger
,
C.
,
Casini
,
L.
,
Hasbroucq
,
T.
, and
Vidal
,
F.
,
2015
, “
Spatial and Temporal Resolutions of EEG: Is It Really Black and White? A Scalp Current Density View
,”
Int. J. Psychophysiol.
,
97
(
3
), pp.
210
220
.10.1016/j.ijpsycho.2015.05.004
4.
Dale
,
A. M.
,
Liu
,
A. K.
,
Fischl
,
B. R.
,
Buckner
,
R. L.
,
Belliveau
,
J. W.
,
Lewine
,
J. D.
, and
Halgren
,
E.
,
2000
, “
Dynamic Statistical Parametric Mapping: Combining FMRI and MEG for High-Resolution Imaging of Cortical Activity
,”
Neuron
,
26
(
1
), pp.
55
67
.10.1016/S0896-6273(00)81138-1
5.
Drake
,
K. L.
,
Wise
,
K. D.
,
Farraye
,
J.
,
Anderson
,
D. J.
, and
BeMent
,
S. L.
,
1988
, “
Performance of Planar Multisite Microprobes in Recording Extracellular Single-Unit Intracortical Activity
,”
IEEE Trans. Biomed. Eng.
,
35
(
9
), pp.
719
732
.10.1109/10.7273
6.
Campbell
,
P. K.
,
Jones
,
K. E.
,
Huber
,
R. J.
,
Horch
,
K. W.
, and
Normann
,
R. A.
,
1991
, “
A Silicon-Based, Three-Dimensional Neural Interface: Manufacturing Processes for an Intracortical Electrode Array
,”
IEEE Trans. Biomed. Eng.
,
38
(
8
), pp.
758
768
.10.1109/10.83588
7.
Polikov
,
V. S.
,
Tresco
,
P. A.
, and
Reichert
,
W. M.
,
2005
, “
Response of Brain Tissue to Chronically Implanted Neural Electrodes
,”
J. Neurosci. Methods
,
148
(
1
), pp.
1
18
.10.1016/j.jneumeth.2005.08.015
8.
Karumbaiah
,
L.
,
Saxena
,
T.
,
Carlson
,
D.
,
Patil
,
K.
,
Patkar
,
R.
,
Gaupp
,
E. A.
,
Betancur
,
M.
,
Stanley
,
G. B.
,
Carin
,
L.
, and
Bellamkonda
,
R. V.
,
2013
, “
Relationship Between Intracortical Electrode Design and Chronic Recording Function
,”
Biomaterials
,
34
(
33
), pp.
8061
8074
.10.1016/j.biomaterials.2013.07.016
9.
Chung
,
J. E.
,
Joo
,
H. R.
,
Fan
,
J. L.
,
Liu
,
D. F.
,
Barnett
,
A. H.
,
Chen
,
S.
,
Geaghan-Breiner
,
C.
,
Karlsson
,
M. P.
,
Karlsson
,
M.
,
Lee
,
K. Y.
,
Liang
,
H.
,
Magland
,
J. F.
,
Pebbles
,
J. A.
,
Tooker
,
A. C.
,
Greengard
,
L. F.
,
Tolosa
,
V. M.
, and
Frank
,
L. M.
,
2019
, “
High-Density, Long-Lasting, and Multi-Region Electrophysiological Recordings Using Polymer Electrode Arrays
,”
Neuron
,
101
(
1
), pp.
21
31.e5
.10.1016/j.neuron.2018.11.002
10.
Musk
,
E.
,
Neuralink
,
2019
, “
An Integrated Brain-Machine Interface Platform With Thousands of Channels
,”
J. Med. Internet Res.
,
21
(
10
), p.
e16194
.10.2196/16194
11.
Patel
,
P. R.
,
Na
,
K.
,
Zhang
,
H.
,
Kozai
,
T. D. Y.
,
Kotov
,
N. A.
,
Yoon
,
E.
, and
Chestek
,
C. A.
,
2015
, “
Insertion of Linear 8.4 Μm Diameter 16 Channel Carbon Fiber Electrode Arrays for Single Unit Recordings
,”
J. Neural Eng.
,
12
(
4
), p.
046009
.10.1088/1741-2560/12/4/046009
12.
Patel
,
P. R.
,
2015
, “
Carbon FIiber Microelectrode Arrays for Neuroprosthetic and Neuroscience Applications
,” Ph.D. thesis,
University of Michigan
,
Ann Arbor, MI
.
13.
Guitchounts
,
G.
,
Markowitz
,
J. E.
,
Liberti
,
W. A.
, and
Gardner
,
T. J.
,
2013
, “
A Carbon-Fiber Electrode Array for Long-Term Neural Recording
,”
J. Neural Eng.
,
10
(
4
), p.
046016
.10.1088/1741-2560/10/4/046016
14.
Patel
,
P. R.
,
Zhang
,
H.
,
Robbins
,
M. T.
,
Nofar
,
J. B.
,
Marshall
,
S. P.
,
Kobylarek
,
M. J.
,
Kozai
,
T. D. Y.
,
Kotov
,
N. A.
, and
Chestek
,
C. A.
,
2016
, “
Chronic In Vivo Stability Assessment of Carbon Fiber Microelectrode Arrays
,”
J. Neural Eng.
,
13
(
6
), p.
066002
.10.1088/1741-2560/13/6/066002
15.
Rose
,
J. D.
, and
Weishaar
,
D. J.
,
1979
, “
Tapered Tungsten Fine-Wire Microelectrode for Chronic Single Unit Recording
,”
Brain Res. Bull.
,
4
(
3
), pp.
435
437
.10.1016/S0361-9230(79)80022-2
16.
Xie
,
K.
,
Fox
,
G. E.
,
Liu
,
J.
, and
Tsien
,
J. Z.
,
2016
, “
512-Channel and 13-Region Simultaneous Recordings Coupled With Optogenetic Manipulation in Freely Behaving Mice
,”
Front. Syst. Neurosci.
,
10
, p.
48
.10.3389/fnsys.2016.00048 
17.
Schwarz
,
D. A.
,
Lebedev
,
M. A.
,
Hanson
,
T. L.
,
Dimitrov
,
D. F.
,
Lehew
,
G.
,
Meloy
,
J.
,
Rajangam
,
S.
,
Subramanian
,
V.
,
Ifft
,
P. J.
,
Li
,
Z.
,
Ramakrishnan
,
A.
,
Tate
,
A.
,
Zhuang
,
K. Z.
, and
Nicolelis
,
M. A. L.
,
2014
, “
Chronic, Wireless Recordings of Large-Scale Brain Activity in Freely Moving Rhesus Monkeys
,”
Nat. Methods
,
11
(
6
), pp.
670
676
.10.1038/nmeth.2936
18.
Liao
,
Y. F.
,
Tsai
,
M. L.
,
Yen
,
C. T.
, and
Cheng
,
C. H.
,
2011
, “
A Simple Method for Fabricating Microwire Tetrode With Sufficient Rigidity and Integrity Without a Heat-Fusing Process
,”
J. Neurosci. Methods
,
195
(
2
), pp.
211
215
.10.1016/j.jneumeth.2010.12.017
19.
MatWeb
,
2012
, “
Solvay Thornel® T-650/35 3K Carbon Fiber, Polyacrylonitrile (PAN) Precursor
,” MatWeb, LLC, Blacksburg, VA, accessed Jan. 1, 2019, http://www.matweb.com/search/datasheet.aspx?matguid=7e9aca60a2e84538a4 e8038784f2b629&ckck=1
20.
Ledbetter
,
H. M.
,
Frederick
,
N. V.
, and
Austin
,
M. W.
,
1980
, “
Elastic-Constant Variability in Stainless-Steel 304 Articles You May Be Interested In
,”
J. Appl. Phys.
,
51
(
1
), pp.
305
309
.10.1063/1.327371
21.
Farraro
,
R.
, and
McLellan
,
R. B.
,
1977
, “
Temperature Dependence of the Young'S Modulus and Shear Modulus of Pure Nickel, Platinum, and Molybdenum
,”
Met. Trans A
,
8
(
10
), pp.
1563
1565
.10.1007/BF02644859
22.
Budai
,
D.
,
2010
, Carbon Fiber-Based Microelectrodes and Microbiosensors, Intelligent and Biosensors, Intech Open, Rijeka, Croatia, pp.
269
288
.
23.
Massey
,
T. L.
,
Santacruz
,
S. R.
,
Hou
,
J. F.
,
Pister
,
K. S. J.
,
Carmena
,
J. M.
, and
Maharbiz
,
M. M.
,
2019
, “
A High-Density Carbon Fiber Neural Recording Array Technology
,”
J. Neural Eng.
,
16
(
1
), p.
016024
.10.1088/1741-2552/aae8d9
24.
Xu
,
H.
,
Hsiao
,
M. C.
,
Song
,
D.
, and
Berger
,
T. W.
,
2014
, “
Recording Place Cells From Multiple Sub-Regions of the Rat Hippocampus With a Customized Micro-Electrode Array
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBC 2014
),
Institute of Electrical and Electronics Engineers
, Chicago, IL, Aug. 26–30, pp.
4876
4879
.10.1109/EMBC.2014.6944716
25.
Millar
,
J.
, and
Pelling
,
C. W. A.
,
2001
, “
Improved Methods for Construction of Carbon Fibre Electrodes for Extracellular Spike Recording
,”
J. Neurosci. Methods
,
110
(
1–2
), pp.
1
8
.10.1016/S0165-0270(01)00411-3
26.
Yin
,
Y.
,
Binner
,
J. G. P.
,
Cross
,
T. E.
, and
Marshall
,
S. J.
,
1994
, “
The Oxidation Behaviour of Carbon Fibres
,”
J. Mater. Sci.
,
29
(
8
), pp.
2250
2254
.10.1007/BF01154706
27.
Von Metzen
,
R. P.
, and
Stieglitz
,
T.
,
2013
, “
The Effects of Annealing on Mechanical, Chemical, and Physical Properties and Structural Stability of Parylene C
,”
Biomed. Microdev.
,
15
(
5
), pp.
727
735
.10.1007/s10544-013-9758-8
28.
Welle
,
E. J.
,
Patel
,
P. R.
,
Woods
,
J. E.
,
Petrossians
,
A.
,
Della Valle
,
E.
,
Vega-Medina
,
A.
,
Richie
,
J. M.
,
Cai
,
D.
,
Weiland
,
J. D.
, and
Chestek
,
C. A.
,
2020
, “
Ultra-Small Carbon Fiber Electrode Recording Site Optimization and Improved In Vivo Chronic Recording Yield
,”
J. Neural Eng.
,
17
(
2
), p.
026037
.10.1088/1741-2552/ab8343
29.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J. Y.
,
White
,
D. J.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open-Source Platform for Biological-Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.10.1038/nmeth.2019
30.
Schneider
,
C. A.
,
Rasband
,
W. S.
, and
Eliceiri
,
K. W.
,
2012
, “
NIH Image to ImageJ: 25 Years of Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
671
675
.10.1038/nmeth.2089
31.
Sharp
,
A. A.
,
Ortega
,
A. M.
,
Restrepo
,
D.
,
Curran-Everett
,
D.
, and
Gall
,
K.
,
2009
, “
In Vivo Penetration Mechanics and Mechanical Properties of Mouse Brain Tissue at Micrometer Scales
,”
IEEE Trans. Biomed. Eng.
,
56
(
1
), pp.
45
53
.10.1109/TBME.2008.2003261
32.
Chen
,
L.
,
Hartner
,
J. P.
,
Dong
,
T.
,
Li
,
A. D. R.
,
Watson
,
B. O.
, and
Shih
,
A. J.
, “
Flexible High-Resolution Force and Dimpling Measurement for Pia and Dura Penetration During In-Vivo Microelectrode Insertion Into Rat Brain
,”
IEEE Trans. Biomed. Eng.
(submitted).
33.
Budai
,
D.
, and
Molnár
,
Z.
,
2001
, “
Novel Carbon Fiber Microeletrodes for Extracellular Electrophysiology
,”
Acta Biologica Szegediensis
,
45
(
1–4
), pp.
65
73
.
You do not currently have access to this content.