Abstract

Microassembly systems utilizing precision robotics have long been used for realizing three-dimensional microstructures such as microsystems and microrobots. Prior to assembly, microscale components are fabricated using micro-electromechanical-system (MEMS) technology. The microassembly system then directs a microgripper through a series of automated or human-controlled pick-and-place operations. In this paper, we describe a novel custom microassembly system, named NEXUS, that can be used to prototype MEMS microrobots. The NEXUS integrates multi-degrees-of-freedom (DOF) precision positioners, microscope computer vision, and microscale process tools such as a microgripper and vacuum tip. A semi-autonomous human–machine interface (HMI) was programmed to allow the operator to interact with the microassembly system. The NEXUS human–machine interface includes multiple functions, such as positioning, target detection, visual servoing, and inspection. The microassembly system's HMI was used by operators to assemble various three-dimensional microrobots such as the Solarpede, a novel light-powered stick-and-slip mobile microcrawler. Experimental results are reported in this paper to evaluate the system's semi-autonomous capabilities in terms of assembly rate and yield and compare them to purely teleoperated assembly performance. Results show that the semi-automated capabilities of the microassembly system's HMI offer a more consistent assembly rate of microrobot components and are less reliant on the operator's experience and skill.

References

1.
Xie
,
H.
,
Rong
,
W.
,
Sun
,
L.
, and
Chen
,
L.
,
2006
, “
A Flexible Microassembly System for Automated Fabrication of MEMS Sensors
,”
Proceedings of Ninth International Conference on Control, Automation, Robotics and Vision
, Singapore, Dec. 5–8, pp.
1
6
.10.1109/ICARCV.2006.345151
2.
Probst
,
M.
,
Hürzeler
,
C.
,
Borer
,
R.
, and
Nelson
,
B. J.
,
2009
, “
A Microassembly System for the Flexible Assembly of Hybrid Robotic Mems Devices
,”
Int. J. Optomechatronics
,
3
(
2
), pp.
69
90
.10.1080/15599610902894592
3.
Probst
,
M.
,
Borer
,
R.
, and
Nelson
,
B. J.
, 2007, “
A Microassembly System for Manufacturing Hybrid Mems
,”
Proceedings of the 12th IFToMM World Congress
, IFToMM, Besancon, June
18
21
.https://www.research-collection.ethz.ch/handle/20.500.11850/6011
4.
Huang
,
X.
,
Lv
,
X.
, and
Wang
,
M.
,
2006
, “
Development of a Robotic Microassembly System With Multi-Manipulator Cooperation
,”
Proceedings of International Conference on Mechatronics and Automation
, Luoyang, China, June 25–29, pp.
1197
1201
.10.1109/ICMA.2006.257796
5.
Cohn
,
M. B.
,
Boehringer
,
K. F.
,
Noworolski
,
J. M.
,
Singh
,
A.
,
Keller
,
C. G.
,
Goldberg
,
K. A.
, and
Howe
,
R. T.
,
1998
, “
Microassembly Technologies for MEMS
,”
Proceedings of Microelectronic Structures and MEMS for Optical Processing IV, International Society for Optics and Photonics
, Sept. 2, Vol. 3513, pp.
2
16
.https://www.spiedigitallibrary.org/conference-proceedings-of-spie/3511/0000/Microassembly-technologies-for-MEMS/10.1117/12.324300.short?SSO=1
6.
Hollis
,
R. L.
, and
Rizzi
,
A. A.
,
2004
, “
Agile Assembly Architecture: A Platform Technology for Microassembly
,”
Proceedings of American Society for Precision Engineering 19th Annual Meeting
, Orlando, FL, Oct.
26
28
.http://clarinet.msl.ri.cmu.edu/publications/pdfs/platcut.pdf
7.
Langer
,
M.
, and
Söffker
,
D.
,
2011
, “
Human Guidance and Supervision of a Manufacturing System for Semi-Automated Production
,”
Proceedings IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies
(
AEECT
), Jordan, Amman, Dec. 6–8, pp.
1
6
.
8.
Estevez
,
P.
,
Khan
,
S.
,
Lambert
,
P.
,
Porta
,
M.
,
Polat
,
I.
,
Scherer
,
C.
,
Tichem
,
M.
,
Staufer
,
U.
,
Langen
,
H. H.
, and
Schmidt
,
R. M.
,
2010
, “
A Haptic Tele-Operated System for Microassembly
,”
Proceedings of International Precision Assembly Seminar
, Springer,Berlin, Heidelberg, February 14, 2010, pp.
13
20
.10.1007/978-3-642-11598-1_2
9.
Popa
,
D. O.
, and
Stephanou
,
H. E.
,
2004
, “
Micro and Mesoscale Robotic Assembly
,”
J. Manuf. Process.
,
6
(
1
), pp.
52
71
.10.1016/S1526-6125(04)70059-6
10.
Popa
,
D. O.
,
Murthy
,
R.
, and
Das
,
A. N.
,
2009
, “
M3-Deterministic, Multiscale, Multirobot Platform for Microsystems Packaging: Design and Quasi-Static Precision Evaluation
,”
IEEE Trans. Autom. Sci. Eng.
,
6
(
2
), pp.
345
361
.10.1109/TASE.2008.2010074
11.
Klotz
,
J. F.
,
Wei
,
D.
,
Yang
,
Z.
,
Zhang
,
R.
,
Sherehiy
,
A.
,
Saadatzi
,
M. N.
, and
Popa
,
D. O.
,
2019
, “
Concept Validation for a Novel Stick-and-Slip, Light-Powered, Mobile Micro-Crawler
,”
Proceedings of International Conference on Manipulation, Automation and Robotics at Small Scales
(
MARSS
), Helsinkl, Finland, July 1–5, pp.
1
7
.10.1109/MARSS.2019.8860938
12.
Das
,
A. N.
, and
Popa
,
D. O.
,
2011
, “
Precision Evaluation of Modular Multiscale Robots for Peg-in-Hole Microassembly Tasks
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems
San Francisco, CA, Sept. 25–30, pp.
1699
1704
.10.1109/IROS.2011.6095017
13.
Pac
,
M. R.
, and
Popa
,
D. O.
,
2011
, “
3-DOF Untethered Microrobot Powered by a Single Laser Beam Based on Differential Thermal Dynamics
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
121
127
.10.1109/ICRA.2011.5980485
14.
Que
,
L.
,
Park
,
J.-S.
, and
Gianchandani
,
Y. B.
,
2001
, “
Bent-Beam Electrothermal actuators-Part I: Single Beam and Cascaded Devices
,”
J. Microelectromech. Syst.
,
10
(
2
), pp.
247
254
.10.1109/84.925771
15.
Gauthier
,
M.
, and
Régnier
,
S.
,
2011
,
Robotic Microassembly
,
Wiley
,
Hoboken, NJ
.
16.
Koichi
,
H.
, and
Tom
,
H.
,
1993
,
Visual Servoing: Real-Time Control of Robot Manipulators Based on Visual Sensory Feedback
,
World Scientific
,
Singapore
.
17.
Hutchinson
,
S.
,
Hager
,
G. D.
, and
Corke
,
P. I.
,
1996
, “
A Tutorial on Visual Servo Control
,”
IEEE Trans. Rob. Autom.
,
12
(
5
), pp.
651
670
.10.1109/70.538972
18.
Fang
,
Y.
,
Dawson
,
D.
,
Dixon
,
W.
, and
Dequeiroz
,
M.
,
2002
, “
2.5 D Visual Servoing of Wheeled Mobile Robots
,”
Proceedings of the IEEE Conference on Decision and Control
, Las Vegas, NV, Dec. 10–13, pp.
2866
2871
.
19.
Vikramaditya
,
B.
, and
Nelson
,
B. J.
,
1997
, “
Visually Guided Microassembly Using Optical Microscopes and Active Vision Techniques
,”
Proceedings of International Conference on Robotics and Automation
,
Albuquerque, NM
, Apr. 20–25, pp.
3172
3177
.10.1109/ROBOT.1997.606771
20.
Das
,
A. N.
,
Zhang
,
P.
,
Lee
,
W. H.
,
Popa
,
D.
, and
Stephanou
,
H.
,
2007
, “
μ 3: Multiscale, Deterministic Micro-Nano Assembly System for Construction of on-Wafer Microrobots
,”
Proceedings of IEEE International Conference on Robotics and Automation,
Roma, Italy, Apr. 10–14, pp.
461
466
.10.1109/ROBOT.2007.363829
21.
Zhang
,
R.
,
Wei
,
D.
, and
Popa
,
D. O.
,
2018
, “
Design, Analysis and Fabrication of sAFAM, a 4 DoF Assembled Microrobot
,”
Proceedings of International Conference on Manipulation, Automation and Robotics at Small Scales
(
MARSS
), Nagoya, Japan, July 4–8, pp.
1
6
.10.1109/MARSS.2018.8481182
22.
Zhang
,
R.
,
Sherehiy
,
A.
,
Yang
,
Z.
,
Wei
,
D.
,
Harnett
,
C. K.
, and
Popa
,
D. O.
,
2019
, “
ChevBot–an Untethered Microrobot Powered by Laser for Microfactory Applications
,”
Proceedings of International Conference on Robotics and Automation
(
ICRA
), Montreal, QC, Canada, May 20–24, pp.
231
236
.10.1109/ICRA.2019.8793856
You do not currently have access to this content.