Abstract

In situ inspection has drawn many attention in manufacturing due to the importance of quality assurance. Having an accurate and robust in situ monitoring can assist corrective actions for a closed-loop control of a manufacturing process. The fringe projection technique, as a variation of the structured light technique, has demonstrated significant potential for real-time in situ monitoring and inspection given its merits of conducting simultaneous high-speed and high-accuracy measurements. However, high-speed three-dimensional (3D) scanning methods like fringe projection technique are typically based on triangulation principle, meaning that the depth information is retrieved by analyzing the triangulation relationship between the light emitter (i.e., projector), the image receiver (i.e., camera) and the tested sample surface. Such measurement scheme cannot reconstruct 3D surfaces where large geometrical variations are present, such as a deep hole or a stair geometry. This is because large geometrical variations will block the auxiliary light used in the triangulation-based methods, which will resultantly cause a shadowed area to occur. In this paper, we propose a uniaxial fringe projection technique to address such limitation. We measured a stair model using both conventional triangulation-based fringe projection technique and the proposed method for comparison. Our experiment demonstrates that the proposed uniaxial fringe projection technique can perform high-speed 3D scanning without shadows appearing in the scene. Quantitative testing shows that an accuracy of 1.15% can be obtained using the proposed uniaxial fringe projection system.

References

1.
Triantaphyllou
,
A.
,
Giusca
,
C. L.
,
Macaulay
,
G. D.
,
Roerig
,
F.
,
Hoebel
,
M.
,
Leach
,
R. K.
,
Tomita
,
B.
, and
Milne
,
K. A.
,
2015
, “
Surface Texture Measurement for Additive Manufacturing
,”
Surf. Topogr. Metrol. Prop.
,
3
(
2
), p.
024002
.10.1088/2051-672X/3/2/024002
2.
Klein
,
M.
, and
Sears
,
J.
,
2004
, “
Laser Ultrasonic Inspection of Laser Cladded 316lss and ti-6-4
,”
International Congress on Applications of Lasers & Electro-Optics
, San Francisco, CA, Oct. 4–7, p.
1006
.https://www.researchgate.net/publication/266139314_Laser_ultrasonic_inspection_of_laser_cladded_316LSS_and_TI-6-4
3.
Karthik
,
N.
,
Gu
,
H.
,
Pal
,
D.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
High Frequency Ultrasonic Non Destructive Evaluation of Additively Manufactured Components
,”
24th International Solid Freeform Fabrication Symposium
, San Francisco, CA, Oct. 4–7, pp.
311
325
.
4.
Zur Jacobsmuhlen
,
J.
,
Kleszczynski
,
S.
,
Schneider
,
D.
, and
Witt
,
G.
,
2013
, “
High Resolution Imaging for Inspection of Laser Beam Melting Systems
,” IEEE International Instrumentation and Measurement Technology Conference (
I2MTC
), Minneapolis, MN, May 6–9, pp.
707
712
.10.1109/I2MTC.2013.6555507
5.
Foster
,
B.
,
Reutzel
,
E.
,
Nassar
,
A.
,
Hall
,
B.
,
Brown
,
S.
, and
Dickman
,
C.
,
2015
, “
Optical, Layerwise Monitoring of Powder Bed Fusion
,”
Solid Freeform Fabrication Symposium
, Austin, TX, Aug, pp.
10
12
.http://utw10945.utweb.utexas.edu/sites/default/files/2015/2015-24-Foster.pdf
6.
Craeghs
,
T.
,
Clijsters
,
S.
,
Kruth
,
J.-P.
,
Bechmann
,
F.
, and
Ebert
,
M.-C.
,
2012
, “
Detection of Process Failures in Layerwise Laser Melting With Optical Process Monitoring
,”
Phys. Procedia
,
39
, pp.
753
759
.10.1016/j.phpro.2012.10.097
7.
Furumoto
,
T.
,
Ueda
,
T.
,
Alkahari
,
M. R.
, and
Hosokawa
,
A.
,
2013
, “
Investigation of Laser Consolidation Process for Metal Powder by Two-Color Pyrometer and High-Speed Video Camera
,”
CIRP Ann.
,
62
(
1
), pp.
223
226
.10.1016/j.cirp.2013.03.032
8.
Doubenskaia
,
M.
,
Pavlov
,
M.
, and
Chivel
,
Y.
,
2010
, “
Optical System for on-Line Monitoring and Temperature Control in Selective Laser Melting Technology
,”
Key Engineering Materials
, Vol. 437,
Trans Tech Publications
,
Zurich, Switzerland
, pp.
458
461
.
9.
Krolczyk
,
G.
,
Raos
,
P.
, and
Legutko
,
S.
,
2014
, “
Experimental Analysis of Surface Roughness and Surface Texture of Machined and Fused Deposition Modelled Parts
,”
Tehnički Vjesnik
,
21
(
1
), pp.
217
221
.
10.
Unkovskiy
,
A.
,
Spintzyk
,
S.
,
Axmann
,
D.
,
Engel
,
E.-M.
,
Weber
,
H.
, and
Huettig
,
F.
,
2019
, “
Additive Manufacturing: A Comparative Analysis of Dimensional Accuracy and Skin Texture Reproduction of Auricular Prostheses Replicas
,”
J. Prosthodontics
,
28
(
2
), pp.
e460
e468
.10.1111/jopr.12681
11.
Huang
,
W.
, and
Kovacevic
,
R.
,
2011
, “
A Laser-Based Vision System for Weld Quality Inspection
,”
Sensor
,
11
(
1
), pp.
506
521
.10.3390/s110100506
12.
Li
,
Z.
,
Liu
,
X.
,
Wen
,
S.
,
He
,
P.
,
Zhong
,
K.
,
Wei
,
Q.
,
Shi
,
Y.
, and
Liu
,
S.
,
2018
, “
In Situ 3d Monitoring of Geometric Signatures in the Powder-Bed-Fusion Additive Manufacturing Process Via Vision Sensing Methods
,”
Sensor
,
18
(
4
), p.
1180
.10.3390/s18041180
13.
Danzl
,
R.
,
Helmli
,
F.
, and
Scherer
,
S.
,
2011
, “
Focus Variation – A Robust Technology for High Resolution Optical 3d Surface Metrology
,”
J. Mech. Eng.
,
2011
(
3
), pp.
245
256
.10.5545/sv-jme.2010.175
14.
Zheng
,
Y.
,
Zhang
,
X.
,
Wang
,
S.
,
Li
,
Q.
,
Qin
,
H.
, and
Li
,
B.
,
2020
, “
Similarity Evaluation of Topography Measurement Results by Different Optical Metrology Technologies for Additive Manufactured Parts
,”
Opt. Lasers Eng.
,
126
, p.
105920
.10.1016/j.optlaseng.2019.105920
15.
Zhang
,
X.
,
Zheng
,
Y.
,
Suresh
,
V.
,
Wang
,
S.
,
Li
,
Q.
,
Li
,
B.
, and
Qin
,
H.
,
2020
, “
Correlation Approach for Quality Assurance of Additive Manufactured Parts Based on Optical Metrology
,”
J. Manuf. Process.
,
53
, pp.
310
317
.10.1016/j.jmapro.2020.02.037
16.
Malacara
,
D.
,
2007
,
Optical Shop Testing
,
59
,
Wiley
,
Hoboken, NJ
.
17.
Wang
,
Y.
, and
Zhang
,
S.
,
2011
, “
Superfast Multifrequency Phase-Shifting Technique With Optimal Pulse Width Modulation
,”
Opt. Express
,
19
(
6
), pp.
5149
5155
.10.1364/OE.19.005149
18.
Li
,
B.
, and
Zhang
,
S.
,
2015
, “
Flexible Calibration Method for Microscopic Structured Light System Using Telecentric Lens
,”
Opt. Express
,
23
(
20
), pp.
25795
25803
.10.1364/OE.23.025795
19.
Xiong
,
Y.
, and
Shafer
,
S. A.
,
1993
, “
Depth From Focusing and Defocusing
,”
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
, New York, June 15–17, pp.
68
73
.10.1109/CVPR.1993.340977
20.
Zheng
,
Y.
,
Wang
,
Y.
, and
Li
,
B.
,
2020
, “
Active Shape From Projection Defocus Profilometry
,”
Opt. Lasers Eng.
,
134
, p.
106277
.10.1016/j.optlaseng.2020.106277
21.
Wi
,
K.
,
Suresh
,
V.
,
Wang
,
K.
,
Li
,
B.
, and
Qin
,
H.
,
2020
, “
Quantifying Quality of 3d Printed Clay Objects Using a 3d Structured Light Scanning System
,”
Addit. Manuf.
,
32
, p.
100987
.10.1016/j.addma.2019.100987
You do not currently have access to this content.