Abstract

A material-oriented regularization (MOR) methodology is developed to solve manufacturing inverse problem of estimating the manufacture input process parameters for a required output performance, demonstrated by ion beam microprocessing of tungsten components in future fusion reactors. The MOR methodology is explored as following steps: forward problem modeling, identification of characteristic material loading, and solving the inverse problem via the characteristic material loading. A thermodynamic model is established in forward problem scheme by comprehensively incorporating material constraints of tungsten, to simulate the output of residual surface stresses in top layer of several μm that determines fatigue performance of the microprocessed tungsten component. With the experimentally verified model, all material loading variables, i.e., thermal, elastic strain, and plastic strain energies can be explicitly described under the processing load of thermal energy input. Among the material loading variables, stored elastic strain energy is identified as characteristic material loading with a highest sensitivity in correlation to residual surface stresses, as process signature. The processing load of 2.1–4.2 J/cm2 is derived for a required residual surface stress in range of 0–1500 MPa within 15 μm depth, with an upper bound of the relative error of 4.7–11.7% for the inverse problem solution. The MOR enables comprehensive incorporation of material constraints with a self-convergence effect to effectively relax the ill-posedness of manufacturing inverse problems, otherwise in conventional regularizations such constraints have to be empirically adjusted in compromise with data fitting.

References

1.
Guo
,
D. M.
,
2011
, “
Function-Geometry Integrated Precision Machining Methods and Technologies for High Performance Workpieces
,”
Eng. Sci.
,
13
(
10
), pp.
47
57
.10.3969/j.issn.1009-1742.2011.10.007
2.
Zhu
,
X. P.
,
Du
,
P. C.
,
Meng
,
Y.
,
Lei
,
M. K.
, and
Guo
,
D. M.
,
2017
, “
Solution to Inverse Problem of Manufacturing by Surface Modification With Controllable Surface Integrity Correlated to Performance: A Case Study of Thermally Sprayed Coatings for Wear Performance
,”
ASME J. Tribol.
,
139
(
6
), p.
061604
.10.1115/1.4036184
3.
Vogel
,
C. R.
,
2002
, “
Computational Methods for Inverse Problems
,” SIAM, Philadephia, PA.
4.
Inoue
,
H.
,
Harrigan
,
J. J.
, and
Reid
,
S. R.
,
2001
, “
Review of Inverse Analysis for Indirect Measurement of Impact Force
,”
ASME Appl. Mech. Rev.
,
54
(
6
), pp.
503
524
.10.1115/1.1420194
5.
Lei
,
M. K.
,
Zhu
,
X. P.
, and
Guo
,
D. M.
,
2016
, “
Reducing Geometrical, Physical and Chemical Constraints in Surface Integrity of High Performance Stainless Steel Components by Surface Modification
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
044501
.10.1115/1.4031191
6.
Clifton
,
R. J.
,
1985
, “
Stress Wave Propagation, Dynamic Material Response, and Quantitative Non-Destructive Evaluation
,”
ASME Appl. Mech. Rev.
,
38
(
10
), pp.
1276
1278
.10.1115/1.3143690
7.
Willberg
,
C.
,
Duczek
,
S.
,
Vivar-Perez
,
J. M.
, and
Ahmad
,
Z. A. B.
,
2015
, “
Simulation Methods for Guided Wave-Based Structural Health Monitoring: A Review
,”
ASME Appl. Mech. Rev.
,
67
, p.
010803
.10.1115/1.4029539
8.
Tuysuzoglu
,
A.
,
Kracht
,
J. M.
,
Cleveland
,
R. O.
,
Çetin
,
M.
, and
Karl
,
W. C.
,
2012
, “
Sparsity Driven Ultrasound Imaging
,”
J. Acoust. Soc. Am.
,
131
(
2
), pp.
1271
1281
.10.1121/1.3675002
9.
Wang
,
H. Z.
,
Feng
,
B.
,
Wang
,
X. W.
,
Hu
,
J. T.
,
Liu
,
S. Y.
,
Li
,
H.
, and
Zhou
,
Y.
,
2017
, “
The Theoretical Framework of Characteristic Wave Inversion Imaging
,”
Geo-Phys. Prospect. Pet.
,
56
(
1
), pp.
38
49
. http://gpp.geophysics.cn/EN/Y2017/V56/I1/38
10.
Just
,
V. E.
,
Ricard
,
B.
,
Chatellier
,
L.
,
Fournier
,
L.
, and
Haik
,
P.
,
2005
, “
Information Processing Techniques: A Major Asset for the Aging and Life Management of Key NPP Components
,”
ASME
Paper No. PVP2005-71602.10.1115/PVP2005-71602
11.
Tallman
,
T. N.
, and
Hernandez
,
J. A.
,
2017
, “
The Effect of Error and Regularization Norms on Strain and Damage Identification Via Electrical Impedance Tomography in Piezoresistive Nanocomposites
,”
NDT&E Int.
,
91
, pp.
156
163
.10.1016/j.ndteint.2017.07.003
12.
Jawahir
,
I. S.
,
Brinksmeier
,
E.
,
M'Saoubi
,
R.
,
Aspinwall
,
D. K.
,
Outeiro
,
J. C.
,
Meyer
,
D.
,
Umbrello
,
D.
, and
Jayal
,
A. D.
,
2011
, “
Surface Integrity in Material Removal Processes: Recent Advances
,”
CIRP Ann. Manuf. Technol.
,
60
(
2
), pp.
603
626
.10.1016/j.cirp.2011.05.002
13.
Klink
,
A.
,
2016
, “
Process Signature of EDM and ECM Processes—Overview From Part Functionality and Surface Modification Point of View
,”
Procedia CIRP
,
42
, pp.
240
245
.10.1016/j.procir.2016.02.279
14.
Webster
,
G. A.
, and
Ezeilo
,
A. N.
,
2001
, “
Residual Stress Distributions and Their Influence on Fatigue Lifetimes
,”
Int. J. Fatigue
,
23
, pp.
375
S383
.10.1016/S0142-1123(01)00133-5
15.
Nguyen
,
T. N.
, and
Wahab
,
M. A.
,
1998
, “
The Effect of Weld Geometry and Residual Stresses on the Fatigue of Welded Joints Under Combined Loading
,”
J. Mater. Process. Technol.
,
77
(
1–3
), pp.
201
208
.10.1016/S0924-0136(97)00418-4
16.
Lei
,
M. K.
,
Zhu
,
X. P.
,
Li
,
Y. P.
, and
Guo
,
D. M.
,
2016
, “
Significance of Surface Integrity on High Performance Manufacturing by Surface Modification
,”
Int. J. Adv. Manuf. Technol.
,
82
(
9–12
), pp.
1831
1842
.10.1007/s00170-015-7467-6
17.
Behnam
,
K.
, and
Mohammadreza
,
S.
,
2017
, “
Effects of Hybrid Electrical Discharge Machining Processes on Surface Integrity and Residual Stresses of Ti-6Al-4V Titanium Alloy
,”
Int. J. Adv. Manuf. Technol.
,
93
(
5–8
), pp.
1999
2011
.10.1007/s00170-017-0601-x
18.
Brinksmeier
,
E.
,
Klocke
,
F.
,
Lucca
,
D. A.
,
Sölter
,
J.
, and
Meyer
,
D.
,
2014
, “
Process Signature—A New Approach to Solve the Inverse Surface Integrity Problem in Machining Processes
,”
Procedia CIRP
,
13
, pp.
429
434
.10.1016/j.procir.2014.04.073
19.
Frerichs
,
F.
,
Sölter
,
J.
,
Lübben
,
T.
,
Brinksmeier
,
E.
, and
Zoch
,
H. W.
,
2016
, “
A Simulation Based Development of Process Signature for Manufacturing Processes With Thermal Loads
,”
Procedia CIRP
,
45
, pp.
327
330
.10.1016/j.procir.2016.03.039
20.
Buchkremer
,
S.
, and
Klocke
,
F.
,
2017
, “
Compilation of a Thermodynamics Based Process Signature for the Formation of Residual Surface Stresses in Metal Cutting
,”
Wear
,
376–377
, pp.
1156
1163
.10.1016/j.wear.2016.11.013
21.
Zhao
,
T.
,
Mehrafsun
,
S.
, and
Vollertsen
,
F.
,
2016
, “
Energy-Based Approach as an Example for a Process Signature for Laser Microprocssing
,”
Proc. SPIE
,
10018
, p.
100180D
.10.1117/12.2245445
22.
Müller
,
A. V.
,
Schlick
,
G.
,
Neu
,
R.
,
Anstätt
,
C.
,
Klimkait
,
T.
,
Lee
,
J.
,
Pascher
,
B.
,
Schmitt
,
M.
, and
Seidel
,
C.
,
2019
, “
Additive Manufacturing of Pure Tungsten by Means of Selective Laser Beam Melting With Substrate Preheating Temperatures Up to 1000 °C
,”
Nucl. Mater. Energy
,
19
, pp.
184
188
.10.1016/j.nme.2019.02.034
23.
Hou
,
Q. Y.
,
Ma
,
X. Y.
,
Lu
,
R. C.
,
Wang
,
W.
,
Wang
,
P.
, and
Huang
,
Z. Y.
,
2019
, “
Microstructure and Laser Irradiation Characteristics of TiC-Free and TiC-Doped Tungsten-Based Coatings Prepared by Supersonic Atmospheric Plasma Spraying
,”
Surf. Coat. Technol.
,
358
, pp.
796
805
.10.1016/j.surfcoat.2018.11.089
24.
Heuer
,
S.
,
Matějíček
,
J.
,
Vilémová
,
M.
,
Koller
,
M.
,
Illkova
,
K.
,
Veverka
,
J.
,
Weber
,
T.
,
Pintsuk
,
G.
,
Coenen
,
J. W.
, and
Linsmeier
,
C.
,
2019
, “
Atmospheric Plasma Spraying of Functionally Graded Steel/Tungsten Layers for the First Wall of Future Fusion Reactors
,”
Surf. Coat. Technol.
,
366
, pp.
170
178
.10.1016/j.surfcoat.2019.03.017
25.
Lei
,
M. K.
,
Zhu
,
X. P.
,
Liu
,
C.
,
Xin
,
J. P.
,
Han
,
X. G.
,
Li
,
P.
,
Dong
,
Z. H.
,
Wang
,
X.
, and
Miao
,
S. M.
,
2009
, “
A Novel Shock Processing by High-Intensity Pulsed Ion Beam
,”
ASME J. Manuf. Sci. Eng.
,
131
(
3
), p.
031013
.10.1115/1.3139214
26.
SRIM
,
2013
, “
The Stopping and Range of Ions in Matter
,” accessed Dec. 30, 2019, http://srim.org/
27.
Škoro
,
G. P.
,
Bennett
,
J. R. J.
,
Edgecock
,
T. R.
,
Gray
,
S. A.
,
McFarland
,
A. J.
,
Booth
,
C. N.
,
Rodgers
,
K. J.
, and
Back
,
J. J.
,
2011
, “
Dynamic Young's Moduli of Tungsten and Tantalum at High Temperature and Stress
,”
J. Nucl. Mater.
,
409
(
1
), pp.
40
46
.10.1016/j.jnucmat.2010.12.222
28.
Heltemes
,
T. A.
,
Boris
,
D. R.
,
Moses
,
G. A.
, and
Fatenejad
,
M.
,
2007
, “
Simulation of Thermal Response and Ion Deposition in the HAPL Target Chamber 1 mm Tungsten Armor Layer Using the Improved BUCKY Code
,”
Fusion. Eng. Des.
,
82
(
2
), pp.
175
187
.10.1016/j.fusengdes.2006.09.004
29.
White
,
G. K.
, and
Collocott
,
S. J.
,
1984
, “
Heat Capacity of Reference Materials: Cu and W
,”
J. Phys. Chem. Ref. Data
,
13
(
4
), pp.
1251
1257
.10.1063/1.555728
30.
Hixson
,
R. S.
, and
Winkler
,
M. A.
,
1990
, “
Thermophysical Properties of Solid and Liquid Tungsten
,”
Int. J. Thermophys.
,
11
(
4
), pp.
709
718
.10.1007/BF01184339
31.
Miiller
,
A. P.
, and
Cezairliyan
,
A.
,
1990
, “
Thermal Expansion of Tungsten in the Range 1500-3600 K by a Transient Interferometric Technique
,”
Int. J. Thermophys.
,
11
(
4
), pp.
619
628
.10.1007/BF01184332
32.
Lee
,
C.-H.
, and
Chang
,
K.-H.
,
2011
, “
Prediction of Residual Stresses in High Strength Carbon Steel Pipe Weld Considering Solid-State Phase Transformation Effects
,”
Comput. Struct.
,
89
(
1
), pp.
256
265
.10.1016/j.compstruc.2010.10.005
33.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
,
1987
, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
,
61
(
5
), pp.
1816
1825
.10.1063/1.338024
34.
Škoro
,
G. P.
,
Bennett
,
J. R. J.
,
Edgecock
,
T. R.
, and
Booth
,
C. N.
,
2012
, “
Yield Strength of Molybdenum, Tantalum and Tungsten at High Strain Rates and Very High Temperatures
,”
J. Nucl. Mater.
,
426
(
1–3
), pp.
45
51
.10.1016/j.jnucmat.2012.03.044
35.
Kapoor
,
R.
, and
Nemat-Nasser
,
S.
,
1998
, “
Determination of Temperature Rise During High Strain Rate Deformation
,”
Mech. Mater.
,
27
(
1
), pp.
1
12
.10.1016/S0167-6636(97)00036-7
36.
Drezet
,
J. M.
,
Evans
,
A.
,
Pirling
,
T.
, and
Pitié
,
B.
,
2012
, “
Stored Elastic Energy in Aluminium Alloy AA 6063 Billets: Residual Stress Measurements and Thermomechanical Modelling
,”
Int. J. Cast. Met. Res.
,
25
(
2
), pp.
110
116
.10.1179/1743133611Y.0000000029
37.
Jaspers
,
S. P. F. C.
, and
Dautzenberg
,
J. H.
,
2002
, “
Material Behavior in Conditions Similar to Metal Cutting Flow Stress in the Primary Shear Zone
,”
J. Mater. Process. Technol.
,
122
(
2–3
), pp.
322
330
.10.1016/S0924-0136(01)01228-6
38.
Baudouin
,
S.
, and
Hosten
,
B.
,
1997
, “
Comparison Between Prediction and Measurement of Viscoelastic Moduli in Composite Materials Versus Temperature Using Ultrasonic Immersion Technique With Oil
,”
J. Acoust. Soc. Am.
,
102
(
6
), pp.
3450
3457
.10.1121/1.419587
You do not currently have access to this content.