Abstract

In laser-induced plasma micromachining (LIPMM), a focused, ultrashort pulsed laser beam creates a highly localized plasma zone within a transparent liquid dielectric. When the beam intensity is greater than the breakdown threshold in the dielectric media, plasma is formed, which is then used to ablate the workpiece. This paper aims to facilitate in situ process monitoring and quality prediction for LIPMM by developing a deep learning model to (1) understand the relationship between acoustic emission data and quality of micromachining with LIPMM, (2) transfer such understanding across different process parameters, and (3) predict quality accurately by fine-tuning models with a smaller dataset. Experiments and results show that the relationship learned from one process parameter can be transferred to other parameters, requiring lesser data and lesser computational time for training the model. We investigate the feasibility of transfer learning and compare the performance of various transfer learning models: different input features, different convolutional neural network (CNN) structures, and the same structure with different fine-tuned layers. The findings provide insights into how to design effective transfer learning models for manufacturing applications.

References

1.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
, “
Feasibility of Laser Induced Plasma Micro-Machining (LIP-MM)
,”
International Precision Assembly Seminar
,
Springer
,
Chamonix, France
, pp.
73
80
.
2.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K.
,
2015
, “
Laser-Induced Plasma Micromachining Process: Principles and Performance
,”
ASME J. Micro Nano-Manuf.
,
3
(
3
), p.
031004
.10.1115/1.4030706
3.
Noack
,
J.
, and
Vogel
,
A.
,
1999
, “
Laser-Induced Plasma Formation in Water at Nanosecond to Femtosecond Time Scales: Calculation of Thresholds, Absorption Coefficients, and Energy Density
,”
IEEE J. Quantum Electron.
,
35
(
8
), pp.
1156
1167
.10.1109/3.777215
4.
Sacchi
,
C.
,
1991
, “
Laser-Induced Electric Breakdown in Water
,”
J. Opt. Soc. Am. B: Opt. Phys.
,
8
(
2
), pp.
337
345
.10.1364/JOSAB.8.000337
5.
Vogel
,
A.
,
Nahen
,
K.
,
Theisen
,
D.
, and
Noack
,
J.
,
1996
, “
Plasma Formation in Water by Picosecond and Nanosecond Nd: YAG Laser Pulses. I. Optical Breakdown at Threshold and Superthreshold Irradiance
,”
IEEE J. Sel. Top. Quantum Electron.
,
2
(
4
), pp.
847
860
.10.1109/2944.577307
6.
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2013
, “
Laser-Induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-Machining Processes
,”
CIRP Ann.
,
62
(
1
), pp.
211
214
.10.1016/j.cirp.2013.03.036
7.
Saxena
,
I.
, and
Ehmann
,
K. F.
,
2014
, “
Multimaterial Capability of Laser Induced Plasma Micromachining
,”
ASME J. Micro Nano-Manuf.
,
2
(
3
), p.
031005
.10.1115/1.4027811
8.
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
High Throughput Microfabrication Using Laser Induced Plasma in Saline Aqueous Medium
,”
J. Mater. Process. Technol.
,
217
, pp.
77
87
.10.1016/j.jmatprotec.2014.10.018
9.
Bakhtiyari
,
A. N.
,
Wang
,
Z.
,
Wang
,
L.
, and
Zheng
,
H.
,
2021
, “
A Review on Applications of Artificial Intelligence in Modeling and Optimization of Laser Beam Machining
,”
Opt. Laser Technol.
,
135
, p.
106721
.10.1016/j.optlastec.2020.106721
10.
Pallav
,
K.
,
Saxena
,
I.
, and
Ehmann
,
K. F.
,
2014
, “
Comparative Assessment of the Laser-Induced Plasma Micromachining and the Ultrashort Pulsed Laser Ablation Processes
,”
ASME J. Micro Nano-Manuf.
,
2
(
3
), p.
031001
.10.1115/1.4027738
11.
Yan
,
Y.
,
Li
,
L.
,
Sezer
,
K.
,
Whitehead
,
D.
,
Ji
,
L.
,
Bao
,
Y.
, and
Jiang
,
Y.
,
2012
, “
Nano-Second Pulsed DPSS Nd: YAG Laser Striation-Free Cutting of Alumina Sheets
,”
Int. J. Mach. Tools Manuf.
,
53
(
1
), pp.
15
26
.10.1016/j.ijmachtools.2011.07.006
12.
Wee
,
L. M.
, and
Li
,
L.
,
2005
, “
An Analytical Model for Striation Formation in Laser Cutting
,”
Appl. Surf. Sci.
,
247
(
1–4
), pp.
277
284
.10.1016/j.apsusc.2005.01.143
13.
Tani
,
G.
,
Tomesani
,
L.
, and
Campana
,
G.
,
2003
, “
Prediction of Melt Geometry in Laser Cutting
,”
Appl. Surf. Sci.
,
208–209
, pp.
142
147
.10.1016/S0169-4332(02)01353-3
14.
Kim
,
M. J.
,
2012
, “
Meshfree Isoparametric Finite Point Interpolation Method (IFPIM) With Weak and Strong Forms for Evaporative Laser Drilling
,”
Appl. Math. Modell.
,
36
(
4
), pp.
1615
1625
.10.1016/j.apm.2011.09.026
15.
Leitz
,
K.-H.
,
Koch
,
H.
,
Otto
,
A.
, and
Schmidt
,
M.
,
2012
, “
Numerical Simulation of Process Dynamics During Laser Beam Drilling With Short Pulses
,”
Appl. Phys. A
,
106
(
4
), pp.
885
891
.10.1007/s00339-011-6702-8
16.
Patel
,
P.
,
Sheth
,
S.
, and
Patel
,
T.
,
2016
, “
Experimental Analysis and ANN Modelling of HAZ in Laser Cutting of Glass Fibre Reinforced Plastic Composites
,”
Proc. Technol.
,
23
, pp.
406
413
.10.1016/j.protcy.2016.03.044
17.
Petković
,
D.
,
Nikolić
,
V.
,
Milovančević
,
M.
, and
Lazov
,
L.
,
2016
, “
Estimation of the Most Influential Factors on the Laser Cutting Process Heat Affected Zone (HAZ) by Adaptive Neuro-Fuzzy Technique
,”
Infrared Phys. Technol.
,
77
, pp.
12
15
.10.1016/j.infrared.2016.05.005
18.
Kadri
,
M. B.
,
Nisar
,
S.
,
Khan
,
S. Z.
, and
Khan
,
W. A.
,
2015
, “
Comparison of ANN and Finite Element Model for the Prediction of Thermal Stresses in Diode Laser Cutting of Float Glass
,”
Optik-Int. J. Light Electron Opt.
,
126
(
19
), pp.
1959
1964
.10.1016/j.ijleo.2015.05.033
19.
Yang
,
R.
,
Huang
,
Y.
,
Rong
,
Y.
,
Wu
,
C.
,
Liu
,
W.
, and
Chen
,
L.
,
2022
, “
Evaluation and Classification of CFRP Kerf Width by Acoustic Emission in Nanosecond Laser Cutting
,”
Opt. Laser Technol.
,
152
, p.
108165
.10.1016/j.optlastec.2022.108165
20.
Chen
,
L.
,
Huang
,
Y.
,
Li
,
W.
,
Yang
,
R.
,
Chen
,
X.
,
Zhang
,
G.
, and
Rong
,
Y.
,
2023
, “
Acoustic Emission Monitoring and Heat-Affected Zone Evaluation of CFRP Laser Cutting
,”
Compos. Struct.
,
304
, p.
116419
.10.1016/j.compstruct.2022.116419
21.
Ferguson
,
M.
,
Ak
,
R.
,
Lee
,
Y.-T. T.
, and
Law
,
K. H.
,
2018
, “
Detection and Segmentation of Manufacturing Defects With Convolutional Neural Networks and Transfer Learning
,” arXiv preprint arXiv:1808.02518.
22.
Wang
,
P.
, and
Gao
,
R. X.
,
2020
, “
Transfer Learning for Enhanced Machine Fault Diagnosis in Manufacturing
,”
CIRP Ann.
,
69
(
1
), pp.
413
416
.10.1016/j.cirp.2020.04.074
23.
Pandiyan
,
V.
,
Drissi-Daoudi
,
R.
,
Shevchik
,
S.
,
Masinelli
,
G.
,
Le-Quang
,
T.
,
Logé
,
R.
, and
Wasmer
,
K.
,
2022
, “
Deep Transfer Learning of Additive Manufacturing Mechanisms Across Materials in Metal-Based Laser Powder Bed Fusion Process
,”
J. Mater. Process. Technol.
,
303
, p.
117531
.10.1016/j.jmatprotec.2022.117531
24.
Cleeman
,
J.
,
Guo
,
W.
, and
Malhotra
,
R.
,
2023
, “
Magnetically Assisted Laser-Induced Plasma Micromachining (M-LIPMM)
,”
ASME
, New York.
25.
Aytar
,
Y.
,
Vondrick
,
C.
, and
Torralba
,
A.
,
2016
, “
Soundnet: Learning Sound Representations From Unlabeled Video
,”
Adv. Neural Inf. Process. Syst.
,
29
, pp.
892
900
.10.5555/3157096.3157196
26.
Szegedy
,
C.
,
Vanhoucke
,
V.
,
Ioffe
,
S.
,
Shlens
,
J.
, and
Wojna
,
Z.
,
2016
, “
Rethinking the Inception Architecture for Computer Vision
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, Las Vegas, NV, June 26–July 1, pp.
2818
2826
.10.48550/arXiv.1512.00567
27.
Simonyan
,
K.
, and
Zisserman
,
A.
,
2014
, “
Very Deep Convolutional Networks for Large-Scale Image Recognition
,” arXiv preprint arXiv:1409.1556.
28.
He
,
K.
,
Zhang
,
X.
,
Ren
,
S.
, and
Sun
,
J.
,
2016
, “
Deep Residual Learning for Image Recognition
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp.
770
778
.https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
You do not currently have access to this content.