Abstract

Bioprinting for regenerative medicine has been gaining a lot of popularity in today's world. Despite being one of the rigorously studied fields, there are still several challenges yet to be solved. Geometric fidelity and mechanical complexities stand as roadblocks when it comes to the printability of the customized constructs. Exploring the rheological properties of the compositions helps us understand the physical and mechanical properties of the biomaterials which are closely tied to the printability of the filament and eventually, geometric fidelity of the constructs. To ensure the structural integrity of the constructs, viscosity enhancers such as carboxymethyl cellulose (CMC) and crosslinkers like CaCl2 and CaSO4 were used. These crosslinkers can be used before (precrosslinking) and after (postcrosslinking) the extrusion of considered compositions to investigate and compare the outcome. To do this, mixtures of CMC (viscosity enhancer), Alginate, and CaCl2 and CaSO4 (crosslinkers) were prepared at various concentrations maintaining minimum solid content (≤8%). Each composition was subjected to a set of rheological tests like flow curve for shear thinning behavior, three points thixotropic for recovery rate, and amplitude test for gelation point. Various geometric fidelity identification tests were conducted and correlated with their physical properties. Some compositions were used to fabricate large-scale constructs (in cm-scale) to demonstrate their capability. This research is a thorough investigation of compositions when they are introduced to crosslinkers and viscosity enhancers which can be crucial for the 3D printing world.

References

1.
Murphy
,
S. V.
, and
Atala
,
A.
,
2014
, “
3D Bioprinting of Tissues and Organs
,”
Nat. Biotechnol.
,
32
(
8
), pp.
773
785
.10.1038/nbt.2958
2.
Zeng
,
X.
,
Li
,
T.
,
Zhu
,
J.
,
Chen
,
L.
, and
Zheng
,
B.
,
2021
, “
Printability Improvement of Rice Starch Gel Via Catechin and Procyanidin in Hot Extrusion 3D Printing
,”
Food Hydrocoll.
,
121
, p.
106997
.10.1016/j.foodhyd.2021.106997
3.
Ozbolat
,
I. T.
, and
Hospodiuk
,
M.
,
2016
, “
Current Advances and Future Perspectives in Extrusion-Based Bioprinting
,”
Biomaterials
,
76
, pp.
321
343
.10.1016/j.biomaterials.2015.10.076
4.
Paxton
,
N.
,
Smolan
,
W.
,
Böck
,
T.
,
Melchels
,
F.
,
Groll
,
J.
, and
Jungst
,
T.
,
2017
, “
Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability
,”
Biofabrication.
,
9
(
4
), p.
044107
.10.1088/1758-5090/aa8dd8
5.
Li
,
X.
,
Liu
,
B.
,
Pei
,
B.
,
Chen
,
J.
,
Zhou
,
D.
,
Peng
,
J.
,
Zhang
,
X.
,
Jia
,
W.
, and
Xu
,
T.
,
2020
, “
Inkjet Bioprinting of Biomaterials
,”
Chem. Rev.
,
120
(
19
), pp.
10793
10833
.10.1021/acs.chemrev.0c00008
6.
Wu
,
D.
, and
Xu
,
C.
,
2018
, “
Predictive Modeling of Droplet Formation Processes in Inkjet-Based Bioprinting
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101007
.10.1115/1.4040619
7.
Wang
,
Z.
,
Jin
,
X.
,
Dai
,
R.
,
Holzman
,
J. F.
, and
Kim
,
K.
,
2016
, “
An Ultrafast Hydrogel Photocrosslinking Method for Direct Laser Bioprinting
,”
RSC Adv.
,
6
(
25
), pp.
21099
21104
.10.1039/C5RA24910D
8.
Koch
,
L.
,
Kuhn
,
S.
,
Sorg
,
H.
,
Gruene
,
M.
,
Schlie
,
S.
,
Gaebel
,
R.
,
Polchow
,
B.
,
Reimers
,
K.
,
Stoelting
,
S.
,
Ma
,
N.
,
Vogt
,
P. M.
,
Steinhoff
,
G.
, and
Chichkov
,
B.
,
2010
, “
Laser Printing of Skin Cells and Human Stem Cells
,”
Tissue Eng. Part C Methods
,
16
(
5
), pp.
847
854
.10.1089/ten.tec.2009.0397
9.
Peltola
,
S. M.
,
Melchels
,
F. P.
,
Grijpma
,
D. W.
, and
Kellomäki
,
M.
,
2008
, “
A Review of Rapid Prototyping Techniques for Tissue Engineering Purposes
,”
Ann. Med.
,
40
(
4
), pp.
268
280
.10.1080/07853890701881788
10.
Khoda
,
A.
,
Ozbolat
,
I. T.
, and
Koc
,
B.
,
2011
, “
A Functionally Gradient Variational Porosity Architecture for Hollowed Scaffolds Fabrication
,”
Biofabrication
,
3
(
3
), p.
034106
.10.1088/1758-5082/3/3/034106
11.
Malda
,
J.
,
Visser
,
J.
,
Melchels
,
F. P.
,
Jüngst
,
T.
,
Hennink
,
W. E.
,
Dhert
,
W. J.
,
Groll
,
J.
, and
Hutmacher
,
D. W.
,
2013
, “
25th Anniversary Article: Engineering Hydrogels for Biofabrication
,”
Adv. Mater.
,
25
(
36
), pp.
5011
5028
.10.1002/adma.201302042
12.
Unagolla
,
J. M.
, and
Jayasuriya
,
A. C.
,
2020
, “
Hydrogel-Based 3D Bioprinting: A Comprehensive Review on Cell-Laden Hydrogels, Bioink Formulations, and Future Perspectives
,”
Appl. Mater. Today
,
18
, p.
100479
.10.1016/j.apmt.2019.100479
13.
Sánchez
,
E. M.
,
Gómez-Blanco
,
J. C.
,
Nieto
,
E. L.
,
Casado
,
J. G.
,
Macías-García
,
A.
,
Díez
,
M. A. D.
,
Carrasco-Amador
,
J. P.
,
Martín
,
D. T.
,
Sánchez-Margallo
,
F. M.
, and
Pagador
,
J. B.
,
2020
, “
Hydrogels for Bioprinting: A Systematic Review of Hydrogels Synthesis, Bioprinting Parameters, and Bioprinted Structures Behavior
,”
Front. Bioeng. Biotechnol.
,
8
, p.
776
.10.3389/fbioe.2020.00776
14.
Kirchmajer
,
D. M.
,
Gorkin
, III
,
R.
, and
in het Panhuis
,
M.
,
2015
, “
An Overview of the Suitability of Hydrogel-Forming Polymers for Extrusion-Based 3D-Printing
,”
J. Mater. Chem. B.
,
3
(
20
), pp.
4105
4117
.10.1039/C5TB00393H
15.
Chen
,
Y.
,
Xiong
,
X.
,
Liu
,
X.
,
Cui
,
R.
,
Wang
,
C.
,
Zhao
,
G.
,
Zhi
,
W.
,
Lu
,
M.
,
Duan
,
K.
,
Weng
,
J.
,
Qu
,
S.
, and
Ge
,
J.
,
2020
, “
3D Bioprinting of Shear-Thinning Hybrid Bioinks With Excellent Bioactivity Derived From Gellan/Alginate and Thixotropic Magnesium Phosphate-Based Gels
,”
J. Mater. Chem. B.
,
8
(
25
), pp.
5500
5514
.10.1039/D0TB00060D
16.
Yu
,
F.
,
Han
,
X.
,
Zhang
,
K.
,
Dai
,
B.
,
Shen
,
S.
,
Gao
,
X.
,
Teng
,
H.
,
Wang
,
X.
,
Li
,
L.
,
Ju
,
H.
,
Wang
,
W.
,
Zhang
,
J.
, and
Jiang
,
Q.
,
2018
, “
Evaluation of a Polyvinyl Alcohol‐Alginate Based Hydrogel for Precise 3D Bioprinting
,”
J. Biomed. Mater. Res. Part A
,
106
(
11
), pp.
2944
2954
.10.1002/jbm.a.36483
17.
M'barki
,
A.
,
Bocquet
,
L.
, and
Stevenson
,
A.
,
2017
, “
Linking Rheology and Printability for Dense and Strong Ceramics by Direct Ink Writing
,”
Sci. Rep.
,
7
(
1
), p.
6017
.10.1038/s41598-017-06115-0
18.
Ahlfeld
,
T.
,
Köhler
,
T.
,
Czichy
,
C.
,
Lode
,
A.
, and
Gelinsky
,
M.
,
2018
, “
A Methylcellulose Hydrogel as Support for 3D Plotting of Complex Shaped Calcium Phosphate Scaffolds
,”
Gels
,
4
(
3
), p.
68
.10.3390/gels4030068
19.
Jin
,
Y.
,
Liu
,
C.
,
Chai
,
W.
,
Compaan
,
A.
, and
Huang
,
Y.
,
2017
, “
Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air
,”
ACS Appl. Mater. Interfaces
,
9
(
20
), pp.
17456
17465
.10.1021/acsami.7b03613
20.
Li
,
H.
,
Tan
,
Y. J.
,
Leong
,
K. F.
, and
Li
,
L.
,
2017
, “
3D Bioprinting of Highly Thixotropic Alginate/Methylcellulose Hydrogel With Strong Interface Bonding
,”
ACS Appl. Mater. Interfaces
,
9
(
23
), pp.
20086
20097
.10.1021/acsami.7b04216
21.
Ahn
,
G.
,
Min
,
K.-H.
,
Kim
,
C.
,
Lee
,
J.-S.
,
Kang
,
D.
,
Won
,
J.-Y.
,
Cho
,
D.-W.
,
Kim
,
J.-Y.
,
Jin
,
S.
,
Yun
,
W.-S.
, and
Shim
,
J.-H.
,
2017
, “
Precise Stacking of Decellularized Extracellular Matrix Based 3D Cell-Laden Constructs by a 3D Cell Printing System Equipped With Heating Modules
,”
Sci. Rep.
,
7
(
1
), p.
8624
.10.1038/s41598-017-09201-5
22.
Di Giuseppe
,
M.
,
Law
,
N.
,
Webb
,
B.
,
Macrae
,
R. A.
,
Liew
,
L. J.
,
Sercombe
,
T. B.
,
Dilley
,
R. J.
, and
Doyle
,
B. J.
,
2018
, “
Mechanical Behaviour of Alginate-Gelatin Hydrogels for 3D Bioprinting
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
150
157
.10.1016/j.jmbbm.2017.12.018
23.
Mouser
,
V. H.
,
Melchels
,
F. P.
,
Visser
,
J.
,
Dhert
,
W. J.
,
Gawlitta
,
D.
, and
Malda
,
J.
,
2016
, “
Yield Stress Determines Bioprintability of Hydrogels Based on Gelatin-Methacryloyl and Gellan Gum for Cartilage Bioprinting
,”
Biofabrication
,
8
(
3
), p.
035003
.10.1088/1758-5090/8/3/035003
24.
Tabriz
,
A. G.
,
Hermida
,
M. A.
,
Leslie
,
N. R.
, and
Shu
,
W.
,
2015
, “
Three-Dimensional Bioprinting of Complex Cell Laden Alginate Hydrogel Structures
,”
Biofabrication
,
7
(
4
), p.
045012
.10.1088/1758-5090/7/4/045012
25.
Kuo
,
C.
,
Qin
,
H.
,
Acuña
,
D.
,
Cheng
,
Y.
, and
Jiang
,
X.
,
2019
, “
Printability of Hydrogel Composites Using Extrusion-Based 3D Printing and Post-Processing With Calcium Chloride
,”
J. Food Sci. Nutr.
,
5
, p.
051
.10.24966/FSN-1076/100051
26.
Ruther
,
F.
,
Distler
,
T.
,
Boccaccini
,
A.
, and
Detsch
,
R.
,
2019
, “
Biofabrication of Vessel-Like Structures With Alginate Di-Aldehyde—Gelatin (Ada-Gel) Bioink
,”
J. Mater. Sci. Mater. Med.
,
30
(
1
), p.
8
.10.1007/s10856-018-6205-7
27.
Yu
,
M.
,
Yeow
,
Y. J.
,
Lawrence
,
L.
,
Claudio
,
P. P.
,
Day
,
J. B.
, and
Salary
,
R. R.
,
2021
, “
Characterization of the Functional Properties of Polycaprolactone Bone Scaffolds Fabricated Using Pneumatic Micro-Extrusion
,”
ASME J. Micro Nano-Manuf.
,
9
(
3
), p.
030905
.10.1115/1.4051631
28.
Kiyotake
,
E. A.
,
Douglas
,
A. W.
,
Thomas
,
E. E.
,
Nimmo
,
S. L.
, and
Detamore
,
M. S.
,
2019
, “
Development and Quantitative Characterization of the Precursor Rheology of Hyaluronic Acid Hydrogels for Bioprinting
,”
Acta Biomater.
,
95
, pp.
176
187
.10.1016/j.actbio.2019.01.041
29.
Gao
,
T.
,
Gillispie
,
G. J.
,
Copus
,
J. S.
,
PR
,
A. K.
,
Seol
,
Y.-J.
,
Atala
,
A.
,
Yoo
,
J. J.
, and
Lee
,
S. J.
,
2018
, “
Optimization of Gelatin–Alginate Composite Bioink Printability Using Rheological Parameters: A Systematic Approach
,”
Biofabrication
,
10
(
3
), p.
034106
.10.1088/1758-5090/aacdc7
30.
Ouyang
,
L.
,
Yao
,
R.
,
Zhao
,
Y.
, and
Sun
,
W.
,
2016
, “
Effect of Bioink Properties on Printability and Cell Viability for 3D Bioplotting of Embryonic Stem Cells
,”
Biofabrication
,
8
(
3
), p.
035020
.10.1088/1758-5090/8/3/035020
31.
Blaeser
,
A.
,
Duarte Campos
,
D. F.
,
Puster
,
U.
,
Richtering
,
W.
,
Stevens
,
M. M.
, and
Fischer
,
H.
,
2016
, “
Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity
,”
Adv. Healthcare Mater.
,
5
(
3
), pp.
326
333
.10.1002/adhm.201500677
32.
Kyle
,
S.
,
Jessop
,
Z. M.
,
Al‐Sabah
,
A.
, and
Whitaker
,
I. S.
,
2017
, “
Printability'of Candidate Biomaterials for Extrusion Based 3D Printing: State‐of‐the‐Art
,”
Adv. Healthcare Mater.
,
6
(
16
), p.
1700264
.10.1002/adhm.201700264
33.
Baker
,
B. M.
, and
Chen
,
C. S.
,
2012
, “
Deconstructing the Third Dimension–How 3D Culture Microenvironments Alter Cellular Cues
,”
J. Cell Sci.
,
125
(
Pt 13
), pp.
3015
3024
.10.1242/jcs.079509
34.
Grassi
,
M.
,
Sandolo
,
C.
,
Perin
,
D.
,
Coviello
,
T.
,
Lapasin
,
R.
, and
Grassi
,
G.
,
2009
, “
Structural Characterization of Calcium Alginate Matrices by Means of Mechanical and Release Tests
,”
Molecules
,
14
(
8
), pp.
3003
3017
.10.3390/molecules14083003
35.
Hazur
,
J.
,
Detsch
,
R.
,
Karakaya
,
E.
,
Kaschta
,
J.
,
Teßmar
,
J.
,
Schneidereit
,
D.
,
Friedrich
,
O.
,
Schubert
,
D. W.
, and
Boccaccini
,
A. R.
,
2020
, “
Improving Alginate Printability for Biofabrication: Establishment of a Universal and Homogeneous Pre-Crosslinking Technique
,”
Biofabrication
,
12
(
4
), p.
045004
.10.1088/1758-5090/ab98e5
36.
Jia
,
J.
,
Richards
,
D. J.
,
Pollard
,
S.
,
Tan
,
Y.
,
Rodriguez
,
J.
,
Visconti
,
R. P.
,
Trusk
,
T. C.
,
Yost
,
M. J.
,
Yao
,
H.
,
Markwald
,
R. R.
, and
Mei
,
Y.
,
2014
, “
Engineering Alginate as Bioink for Bioprinting
,”
Acta Biomater.
,
10
(
10
), pp.
4323
4331
.10.1016/j.actbio.2014.06.034
37.
Jessop
,
Z. M.
,
Al-Sabah
,
A.
,
Gao
,
N.
,
Kyle
,
S.
,
Thomas
,
B.
,
Badiei
,
N.
,
Hawkins
,
K.
, and
Whitaker
,
I. S.
,
2019
, “
Printability of Pulp Derived Crystal, Fibril and Blend Nanocellulose-Alginate Bioinks for Extrusion 3D Bioprinting
,”
Biofabrication
,
11
(
4
), p.
045006
.10.1088/1758-5090/ab0631
38.
Erkoc
,
P.
,
Uvak
,
I.
,
Nazeer
,
M. A.
,
Batool
,
S. R.
,
Odeh
,
Y. N.
,
Akdogan
,
O.
, and
Kizilel
,
S.
,
2020
, “
3D Printing of Cytocompatible Gelatin‐Cellulose‐Alginate Blend Hydrogels
,”
Macromol. Biosci.
,
20
(
10
), p.
2000106
.10.1002/mabi.202000106
39.
Hwangbo
,
H.
,
Lee
,
H.
,
Jin
,
E.-J.
,
Lee
,
J.
,
Jo
,
Y.
,
Ryu
,
D.
, and
Kim
,
G.
,
2022
, “
Bio-Printing of Aligned Gelma-Based Cell-Laden Structure for Muscle Tissue Regeneration
,”
Bioactive Mater.
,
8
, pp.
57
70
.10.1016/j.bioactmat.2021.06.031
40.
Rasheed
,
A.
,
Azizi
,
L.
,
Turkki
,
P.
,
Janka
,
M.
,
Hytönen
,
V. P.
, and
Tuukkanen
,
S.
,
2021
, “
Extrusion-Based Bioprinting of Multilayered Nanocellulose Constructs for Cell Cultivation Using in Situ Freezing and Preprint cacl2 Cross-Linking
,”
ACS Omega
,
6
(
1
), pp.
569
578
.10.1021/acsomega.0c05036
41.
Sarker
,
M.
,
Izadifar
,
M.
,
Schreyer
,
D.
, and
Chen
,
X.
,
2018
, “
Influence of Ionic Crosslinkers (Ca2+/Ba2+/Zn2+) on the Mechanical and Biological Properties of 3D Bioplotted Hydrogel Scaffolds
,”
J. Biomater. Sci. Polym. Ed.
,
29
(
10
), pp.
1126
1154
.10.1080/09205063.2018.1433420
42.
Rastin
,
H.
,
Ramezanpour
,
M.
,
Hassan
,
K.
,
Mazinani
,
A.
,
Tung
,
T. T.
,
Vreugde
,
S.
, and
Losic
,
D.
,
2021
, “
3D Bioprinting of a Cell-Laden Antibacterial Polysaccharide Hydrogel Composite
,”
Carbohydr. Polym.
,
264
, p.
117989
.10.1016/j.carbpol.2021.117989
43.
Xu
,
D.
,
Feng
,
X.
,
Niu
,
D.
,
Zhu
,
X.
, and
Song
,
Y.
,
2020
, “
PEDOT: PSS Hydrogel Film for Supercapacitors Via AlCl3-Induced Cross-Linking and Subsequent Organic Solvent Treatments
,”
Mater. Today Commun.
,
24
, p.
101090
.10.1016/j.mtcomm.2020.101090
44.
Freeman
,
F. E.
, and
Kelly
,
D. J.
,
2017
, “
Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate Within Bioprinted Tissues
,”
Sci. Rep.
,
7
(
1
), pp.
1
12
.10.1038/s41598-017-17286-1
45.
Gonzalez-Fernandez
,
T.
,
Tenorio
,
A. J.
,
Campbell
,
K. T.
,
Silva
,
E. A.
, and
Leach
,
J. K.
,
2021
, “
Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts
,”
Tissue Eng. Part A.
,
27
(
17–18
), pp.
1168
1181
.10.1089/ten.tea.2020.0305
46.
Dubbin
,
K.
,
Hori
,
Y.
,
Lewis
,
K. K.
, and
Heilshorn
,
S. C.
,
2016
, “
Dual‐Stage Crosslinking of a Gel‐Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting
,”
Adv. Healthcare Mater.
,
5
(
19
), pp.
2488
2492
.10.1002/adhm.201600636
47.
Li
,
H.
,
Liu
,
S.
, and
Lin
,
L.
,
2016
, “
Rheological Study on 3D Printability of Alginate Hydrogel and Effect of Graphene Oxide
,”
Int. J. Bioprint.
,
2
(
2
), pp.
163
175
.10.18063/IJB.2016.02.007
48.
Demirtaş
,
T. T.
,
Irmak
,
G.
, and
Gümüşderelioğlu
,
M.
,
2017
, “
A Bioprintable Form of Chitosan Hydrogel for Bone Tissue Engineering
,”
Biofabrication
,
9
(
3
), p.
035003
.10.1088/1758-5090/aa7b1d
49.
Bendtsen
,
S. T.
,
Quinnell
,
S. P.
, and
Wei
,
M.
,
2017
, “
Development of a Novel Alginate‐Polyvinyl Alcohol‐Hydroxyapatite Hydrogel for 3D Bioprinting Bone Tissue Engineered Scaffolds
,”
J. Biomed. Mater. Res. Part A
,
105
(
5
), pp.
1457
1468
.10.1002/jbm.a.36036
50.
Kostenko
,
A.
,
Swioklo
,
S.
, and
Connon
,
C.
,
2022
, “
Effect of Calcium Sulphate Pre-Crosslinking on Rheological Parameters of Alginate Based Bio-Inks and on Human Corneal Stromal Fibroblast Survival in 3D Bio-Printed Constructs
,”
Front. Mech. Eng.
,
8
, p.
867685
.10.3389/fmech.2022.867685
51.
Han
,
Y.
, and
Wang
,
L.
,
2017
, “
Sodium Alginate/Carboxymethyl Cellulose Films Containing Pyrogallic Acid: Physical and Antibacterial Properties
,”
J. Sci. Food Agric.
,
97
(
4
), pp.
1295
1301
.10.1002/jsfa.7863
52.
Therriault
,
D.
,
White
,
S. R.
, and
Lewis
,
J. A.
,
2007
, “
Rheological Behavior of Fugitive Organic Inks for Direct-Write Assembly
,”
Appl. Rheol.
,
17
(
1
), p.
10112
.10.1515/arh-2007-0001
53.
Habib
,
A.
, and
Khoda
,
B.
,
2020
, “
Fiber Filled Hybrid Hydrogel for Bio-Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
4
), p.
041013
.10.1115/1.4049479
54.
Habib
,
A.
,
Sathish
,
V.
,
Mallik
,
S.
, and
Khoda
,
B.
,
2018
, “
3D Printability of Alginate-Carboxymethyl Cellulose Hydrogel
,”
Materials
,
11
(
3
), p.
454
.10.3390/ma11030454
55.
Habib
,
A.
, and
Khoda
,
B.
,
2022
, “
Rheological Analysis of Bio-Ink for 3D Bio-Printing Processes
,”
J. Manuf. Processes
,
76
, pp.
708
718
.10.1016/j.jmapro.2022.02.048
56.
Habib
,
A.
, and
Khoda
,
B.
,
2021
, “
A Rheological Study of Bio-Ink: Shear Stress and Cell Viability
,”
ASME
Paper No. MSEC2021-63996.10.1115/MSEC2021- 63996
57.
US Food and Drug Administration (FDA),
2021
, “Bacteriological Analytical Manual Appendix 2: Most Probable Number from Serial Dilutions,” accessed Aug. 15, https://www.Fda.Gov/food/laboratory-methods-food/bam-appendix-2-most-probable-number-serial-dilutions
58.
Nelson
,
C.
,
Tuladhar
,
S.
,
Launen
,
L.
, and
Habib
,
M.
,
2021
, “
3D Bio-Printability of Hybrid Pre-Crosslinked Hydrogels
,”
Int. J. Mol. Sci.
,
22
(
24
), p.
13481
.10.3390/ijms222413481
You do not currently have access to this content.