Abstract

Understanding the tympanic membrane's (TM, or eardrum) response to high-intensity acoustical events, such as blasts, is crucial for preventing and treating blast-induced auditory injuries. Despite its importance, there remains a gap in methodologies and measurements of the TMs rapid dynamic responses to these events. This study investigates the behavior of human TMs exposed to blasts using a novel system that integrates high-speed quantitative imaging techniques with a custom shock tube (ST). High-speed three-dimensional-digital image correlation (DIC) and high-speed Schlieren imaging techniques are applied in synchronization with high-frequency pressure sensors to quantify generation and propagation of shock wave (SW) and its interaction with the TM during the tests. Additionally, digital microscopy and optical coherence tomography (OCT) are utilized to characterize the TM's morphology pre- and postblast exposure. The full-field high-speed dynamic responses of cadaveric human TMs and their fluid–solid interactions with different levels of blast overpressures are presented, and the rupture of the TMs is described in real-time. These measurements are employed to assess whether the TM behaves as a thin shell under exposure to high acoustical events. The findings from these studies enhance the comprehension of the TMs biomechanics and damage mechanics under harsh conditions, thereby advancing prevention and treatment strategies for blast-induced auditory damage.

References

1.
Rosowski
,
J. J.
,
1994
, “
Outer and Middle Ears
,”
Comparative Hearing: Mammals
,
R. R.
Fay
, and
A. N.
Popper
, eds.,
Springer New York
,
New York
, pp.
172
247
.10.1007/978-1-4612-2700-7_6
2.
Funnell
,
W. R. J.
,
Maftoon
,
N.
, and
Decraemer
,
W. F.
,
2013
,
“Modeling of Middle Ear Mechanics
,” Springer, New York, pp.
171
210
.10.1007/978-1-4614-6591-1
3.
Decraemer
,
W. F.
, and
Funnell
,
W. R. J.
,
2008
, “
Anatomical and Mechanical Properties of the Tympanic Membrane
,” Chronic Otitis Media. Pathogenesis-Oriented Therapeutic Management, Gilsum, NH, pp.
51
84
, accessed May 4, 2024, http://books.google.com/books?hl=en&lr=&id=GQyElmnS6qsC&oi=fnd&pg=PA51&dq=Anatomical+and+mechanical+properties+of+the+tympanic+membrane&ots=5rcYyyORH8&sig=90o01ogC3F1KiNcgO6_KAjNEVWM
4.
Tang
,
H.
,
Psota
,
P.
,
Rosowski
,
J. J.
,
Furlong
,
C.
, and
Cheng
,
J. T.
,
2022
, “
Ultra-High Speed Holographic Shape and Displacement Measurements in the Hearing Sciences
,”
Light: Adv. Manuf.
,
3
(
2
), pp.
1
192
.10.37188/lam.2022.015
5.
Yost
,
W. A.
,
2013
, Fundamentals of Hearing: An Introduction,
Emerald
, Bingley, UK, accessed Apr. 20, 2024, https://books.google.com/books/about/Fundamentals_of_Hearing.html?id=nyk_mgEACAAJ
6.
Ghanad
,
I.
,
Polanik
,
M. D.
,
Trakimas
,
D. R.
,
Knoll
,
R. M.
,
Castillo-Bustamante
,
M.
,
Black
,
N. L.
,
Kozin
,
E. D.
, and
Remenschneider
,
A. K.
,
2021
, “
A Systematic Review of Nonautologous Graft Materials Used in Human Tympanoplasty
,”
Laryngoscope
,
131
(
2
), pp.
392
400
.10.1002/lary.28914
7.
Tang
,
H.
,
2022
, “
High-Speed Shape and Displacement Measurements by Holography and Applications in Middle Ear Research
,”
Ph.D. dissertation
,
Worcester Polytechnic Institute
, Worcester, MA.https://digital.wpi.edu/concern/etds/x059cb52d?locale=en
8.
Khaleghi
,
M.
,
Cheng
,
J. T.
,
Furlong
,
C.
, and
Rosowski
,
J. J.
,
2016
, “
In-Plane and Out-of-Plane Motions of the Human Tympanic Membrane
,”
ASME J. Acoust. Soc. Am.
,
139
(
1
), pp.
104
117
.10.1121/1.4935386
9.
Van Der Jeught
,
S.
,
Dirckx
,
J. J. J.
,
Aerts
,
J. R. M.
,
Bradu
,
A.
,
Podoleanu
,
A. G.
, and
Buytaert
,
J. A. N.
,
2013
, “
Full-Field Thickness Distribution of Human Tympanic Membrane Obtained With Optical Coherence Tomography
,”
J. Assoc. Res. Otolaryngol.
,
14
(
4
), pp.
483
494
.10.1007/s10162-013-0394-z
10.
Garner
,
J.
, and
Brett
,
S. J.
,
2007
, “
Mechanisms of Injury by Explosive Devices
,”
Anesthesiol. Clin.
,
25
(
1
), pp.
147
160
.10.1016/j.anclin.2006.11.002
11.
Alipanahi
,
A.
,
Luiz
,
J. O.
,
Cheng
,
J. T.
,
Rosowski
,
J. J.
, and
Furlong-Vazquez
,
C.
,
2023
, “
Blast Production by a Shock Tube for Use in Studies of Exposure of the Tympanic Membrane to High-Intensity Sounds
,”
SEM Annual Conference
,
Orlando, FL, June 5–8, pp. 1–8
.10.1007/978-3-031-50499-0_1
12.
Oliveira Luiz
,
J.
,
Alipanahi
,
A.
,
Cheng
,
J. T.
, and
Rosowski
,
J. J.
,
2023
, “
High-Speed Schlieren Imaging of Shock Waves for the Study of Tympanic Membrane's Response
,”
ASME
Paper No. DETC2023-115148.10.1115/DETC2023-115148
13.
Frank
,
E.
,
Perkoski
,
J.
,
Roberge
,
J.
, and
Walsh
,
J.
,
2019
, “
Design, Realization, and Application of an Ultra-High-Speed Shock Tube for Middle-Ear Mechanics
,”
Worcester Polytechnic Institute
, Worcester, MA.
14.
Hickman
,
T. T.
,
Smalt
,
C.
,
Bobrow
,
J.
,
Quatieri
,
T.
, and
Liberman
,
M. C.
,
2018
, “
Blast-Induced Cochlear Synaptopathy in Chinchillas
,”
Sci. Rep.
,
8
(
1
), p. 10740.10.1038/s41598-018-28924-7
15.
Cho
,
S. I.
,
Gao
,
S. S.
,
Xia
,
A.
,
Wang
,
R.
,
Salles
,
F. T.
,
Raphael
,
P. D.
,
Abaya
,
H.
, et al.,
2013
, “
Mechanisms of Hearing Loss After Blast Injury to the Ear
,”
PLoS One
,
8
(
7
), p.
e67618
.10.1371/journal.pone.0067618
16.
Luo
,
H.
,
Jiang
,
S.
,
Nakmali
,
D. U.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2016
, “
Mechanical Properties of a Human Eardrum at High Strain Rates After Exposure to Blast Waves
,”
J. Dyn. Behav. Mater.
,
2
(
1
), pp.
59
73
.10.1007/s40870-015-0041-3
17.
Hildebrand
,
T.
, and
Rüegsegger
,
P.
,
1997
, “
A New Method for the Model-Independent Assessment of Thickness in Three-Dimensional Images
,”
J. Microsc.
,
185
(
1
), pp.
67
75
.10.1046/j.1365-2818.1997.1340694.x
18.
International Digital Image Correlation Society (iDICs)
, 2018, “
A Good Practices Guide for Digital Image Correlation Standardization
,” International Digital Image Correlation Society, 10, pp.
308
312
.10.32720/idics/gpg.ed1
19.
Wen
,
H.
,
Liu
,
Z.
,
Gao
,
W.
, and
Wang
,
Y.
,
2023
, “
High-Precision 3D-DIC Measurement Method Based on Improved Forward Newton Iteration
,”
Sensors
,
23
(
6
), p.
3317
.10.3390/s23063317
20.
Oliveira Luiz
,
J.
,
Alipanahi
,
A.
,
Rosowski
,
J. J.
,
Furlong
,
C.
, and
Cheng
,
J. T.
,
2024
, “
Study of Human Eardrums Subjected to High Acoustical Levels by Accurate Parametric 3D-Printed Models
,”
SEM Annual Conference
, Vancouver, WA, June
3
6
.
21.
Alipanahi
,
A.
,
Oliveira Luiz
,
J.
,
Furlong
,
C.
,
Rosowski
,
J. J.
, and
Cheng
,
J. T.
,
2024
, “
An Integrated High-Speed 3D-Digital Image Correlation and Schlieren Imaging Methodology for Studying Human Eardrums Exposed to Shock Waves
,”
SEM Annual Conference
, Vancouver, WA, June
3
6
.
22.
Alipanahi
,
A.
,
Oliveira Luiz
,
J.
,
Rosowski
,
J. J.
,
Furlong
,
C.
, and
Cheng
,
J. T.
,
2025
, “
High-Speed 3D-Digital Image Correlation and Schlieren Imaging Integrated With Shock Tube Loading for Investigating Dynamic Response of Human Tympanic Membrane Exposed to Blasts
,”
ASME J. Med. Diagn.
, 8(4), p.
041101
.10.1115/1.4066622
23.
Nishida
,
M.
,
Igra
,
O.
, and
Elperin
,
T. O. V.
,
2001
, “
Shock Tubes
,”
Handbook of Shock Waves, G. BEN-DOR
,
Academic Press
,
Burlington, NJ
, pp.
553
585
.
24.
Davis
,
J.
, and
Churchack
,
H. D.
,
1969
,
Shock Tube Techniques and Instrumentation
, U.S. Army Materiel Command,
Washington, DC
.
25.
Cernak
,
I.
,
2019
, “
Utilization of Shock Tubes in Blast Injury Research
,”
Animal Models of Neurotrauma
, Humana, New York, pp.
93
115
.
26.
Needham
,
C. E.
,
Ritzel
,
D.
,
Rule
,
G. T.
,
Wiri
,
S.
, and
Young
,
L.
,
2015
, “
Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions
,”
Front Neurol.
,
6
, p.
72
.10.3389/fneur.2015.00072
27.
Poudel
,
S.
,
Chandrala
,
L.
,
Das
,
D.
, and
De
,
A.
,
2021
, “
Characteristics of Shock Tube Generated Compressible Vortex Rings at Very High Shock Mach Numbers
,”
Phys. Fluids
,
33
(
9
), p.
096105
.10.1063/5.0063164
28.
Kleine
,
H.
,
2001
, “
Flow Visualization
,”
Handbook of Shock Waves
,
G.
Ben-Dor
,
O.
Igra
, and
T. O. V
Elperin
, eds.,
Academic Press
,
Burlington, NJ
, p.
683
.
29.
Roostaei
,
A. A.
, and
Jahed
,
H.
,
2021
, “
Fundamentals of Cyclic Plasticity Models Fundamentals and Applications
,”
Cyclic Plasticity of Metals: Modeling
,
Elsevier
, Alpharetta, GA, pp.
23
51
.
30.
Rosowski
,
J. J.
,
Dobrev
,
I.
,
Khaleghi
,
M.
,
Lu
,
W.
,
Cheng
,
J. T.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2013
, “
Measurements of Three-Dimensional Shape and Sound-Induced Motion of the Chinchilla Tympanic Membrane
,”
Hear. Res.
,
301
, pp.
44
52
.10.1016/j.heares.2012.11.022
31.
Khaleghi
,
M.
,
Lu
,
W.
,
Dobrev
,
I.
,
Cheng
,
J. T.
,
Furlong
,
C.
, and
Rosowski
,
J. J.
,
2013
, “
Digital Holographic Measurements of Shape and Three-Dimensional Sound-Induced Displacements of Tympanic Membrane
,”
Opt. Eng.
,
52
(
10
), p.
101916
.10.1117/1.OE.52.10.101916
32.
Razavi
,
P.
,
Tang
,
H.
,
Pooladvand
,
K.
,
Ravicz
,
M. E.
,
Remenschneider
,
A.
,
Rosowski
,
J. J.
,
Cheng
,
J. T.
, and
Furlong
,
C.
,
2019
, “
Application of High-Speed DIC to Study Damage of Thin Membranes Under Blast
,”
Dynamic Behavior of Materials
, Vol.
1
,
J.
Kimberley
,
L. E.
Lamberson
, and
S.
Mates
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
361
367
.10.1007/978-3-319-95089-1_66
33.
Razavi
,
P.
,
Tang
,
H.
,
Pooladvand
,
K.
,
Larson
,
C.
,
Frank
,
E. W.
,
Perkoski
,
J. J.
,
Roberge
,
J. Y.
,
Walsh
,
J. C.
,
Rosowski
,
J. J.
,
Cheng
,
J. T.
, and
Furlong
,
C.
,
2020
, “
3D High-Speed Digital Image Correlation (3D-HSDIC) to Study Damage of Human Eardrum Under High-Pressure Loading
,”
Mechanics of Biological Systems and Materials & Micro-and Nanomechanics
,
M. E.
Grady
, ed., Vol.
4
,
Springer International Publishing, Cham
, Switzerland, pp.
57
62
.10.1007/978-3-030-30013-5_10
34.
Engles
,
W. G.
,
Wang
,
X.
, and
Gan
,
R. Z.
,
2017
, “
Dynamic Properties of Human Tympanic Membrane After Exposure to Blast Waves
,”
Ann. Biomed. Eng.
,
45
(
10
), pp.
2383
2394
.10.1007/s10439-017-1870-0
35.
Liang
,
J.
,
Smith
,
K. D.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2019
, “
The Effect of Blast Overpressure on the Mechanical Properties of the Human Tympanic Membrane
,”
J. Mech. Behav. Biomed. Mater.
,
100
, p.
103368
.10.1016/j.jmbbm.2019.07.026
36.
Bien
,
A. G.
,
Jiang
,
S.
, and
Gan
,
R. Z.
,
2023
, “
Real-Time Measurement of Stapes Motion and Intracochlear Pressure During Blast Exposure
,”
Hear. Res.
,
429
, p.
108702
.10.1016/j.heares.2023.108702
37.
Newman
,
A. J.
,
Hayes
,
S. H.
,
Rao
,
A. S.
,
Allman
,
B. L.
,
Manohar
,
S.
,
Ding
,
D.
,
Stolzberg
,
D.
,
Lobarinas
,
E.
,
Mollendorf
,
J. C.
, and
Salvi
,
R.
,
2015
, “
Low-Cost Blast Wave Generator for Studies of Hearing Loss and Brain Injury: Blast Wave Effects in Closed Spaces
,”
J. Neurosci. Methods
,
242
, pp.
82
92
.10.1016/j.jneumeth.2015.01.009
38.
Gan
,
R. Z.
,
Nakmali
,
D.
,
Ji
,
X. D.
,
Leckness
,
K.
, and
Yokell
,
Z.
,
2016
, “
Mechanical Damage of Tympanic Membrane in Relation to Impulse Pressure Waveform— A Study in Chinchillas
,”
Hear. Res.
,
340
, pp.
25
34
.10.1016/j.heares.2016.01.004
39.
Campbell
,
A.
,
Lockwood
,
P.
, and
Stewart
,
D.
,
2015
, “
Anatomy of the Inner Ear
,” University of Dundee School of Medicine, Dundee, Scotland, accessed May 4, 2024, https://sketchfab.com/3d-models/anatomy-of-the-inner-ear-f80bda64666c4b8aaac8f63b7b82a0a0
40.
Barkey
,
M. E.
, and
Lee
,
Y. L.
,
2012
, “
Strain-Based Multiaxial Fatigue Analysis
,”
Metal Fatigue Analysis Handbook
, Butterworth-Heinemann, Boston, MA, pp.
299
331
.
41.
Bruck
,
H. A.
,
McNeill
,
S. R.
,
Sutton
,
M. A.
, and
Peters
,
W. H.
,
1989
, “
Digital Image Correlation Using Newton-Raphson Method of Partial Differential Correction
,”
Exp. Mech.
,
29
(
3
), pp.
261
267
.10.1007/BF02321405
42.
Hamernik
,
R. P.
,
Ahroon
,
W. A.
, and
Hsueh
,
K. D.
,
1991
, “
The Energy Spectrum of an Impulse: Its Relation to Hearing Loss
,”
ASME J. Acoust. Soc. Am.
,
90
(
1
), pp.
197
204
.10.1121/1.402344
43.
Tang
,
H.
,
Psota
,
P.
,
Rosowski
,
J. J.
,
Furlong
,
C.
, and
Cheng
,
J. T.
,
2021
, “
Analyses of the Tympanic Membrane Impulse Response Measured With High-Speed Holography
,”
Hear. Res.
,
410
, p.
108335
.10.1016/j.heares.2021.108335
44.
Gaihede
,
M.
, and
Koefoed-Nielsen
,
B.
,
2000
, “
Mechanics of the Middle Ear System: Age-Related Changes in Viscoelastic Properties
,”
Audiol. Neurootol.
,
5
(
2
), pp.
53
58
.10.1159/000013867
45.
Zalewski
,
T.
,
1906
, “
Experimentelle Untersuchungen Uber Die Resistenzfahigkeit Des Trommelfells
,”
Z. Ohrenheilkd.
,
52
, p.
26
.
46.
Talas
,
D. Ü.
,
Beger
,
O.
,
Çömelekoğlu
,
Ü.
,
Çakır
,
S.
,
Taghipour
,
P.
, and
Vayisoğlu
,
Y.
,
2021
, “
An Insight to Tympanic Membrane Perforation Pressure Through Morphometry: A Cadaver Study
,”
Div. Hyperb. Med.
,
51
(
1
), pp.
10
17
.10.28920/dhm51.1.10-17
47.
Blake
,
P. M.
,
Douglas
,
J. B. W.
,
Krohn
,
P. W.
, and
Zuckerman
,
S.
,
Rupture of the Ear-Drums by Blast
, Ministry of Home Security Report BPC 43/169/WS21, Military Personnel Research Committee (Medical Research Council),
Oxford
, UK
48.
Richmond
,
D. R.
,
Fletcher
,
E. R.
,
Yelverton
,
J. T.
, and
Phillips
,
Y. Y.
,
1989
, “
Physical Correlates of Eardrum Rupture
,”
Ann. Otol. Rhinol. Laryngol.
,
98
(
5_suppl
), pp.
35
41
.10.1177/00034894890980S507
49.
Hirsch
,
F. G.
,
1966
, Effects of Overpressure on the Ear—A Review,
Annals of the New York Academy of Sciences
,
Albuquerque, NM
.https://www.researchgate.net/publication/227585252_EFFECTS_OF_OVERPRESSURE_ON_THE_EAR-a
50.
Khalegi
,
M.
,
2015
, “
Development of Holographic Interferometric Methodologies for Characterization of Shape and Function of the Human Tympanic Membrane
,”
Ph.D. dissertation
,
Worcester Polytechnic Institute
, Worcester, MA.https://www.researchgate.net/publication/322343133_Development_of_Holographic_Interferometric_Methodologies_for_Characterization_of_Shape_and_Function_of_the_Human_Tympanic_Membrane
51.
Ventsel
,
E.
, and
Krauthammer
,
T.
,
2002
, “
Thin Plates and Shells: Theory, Analysis, and Applications
,”
Appl. Mech. Rev.
, 55(4), pp. B72–B73.10.1201/9780203908723
52.
Kraus
,
H.
,
1967
, “
Thin Elastic Shells: An Introduction to the Theoretical Foundations and the Analysis of Their Static and Dynamic Behavior
,” John Wiley & Sons, Inc., New York.
53.
Wiri
,
S.
,
Wagner
,
C.
,
Longwell
,
J.
,
Adams
,
T.
,
Whitty
,
J.
,
Massow
,
T.
,
Reid
,
J.
, et al.,
2024
, “
Significant Mitigation of Blast Overpressure Exposure During Training by Adjustment of Body Position as Demonstrated With Field Data
,”
Mil. Med.
,
189
(
5–6
), pp.
e1154
e1160
.10.1093/milmed/usad429
54.
Fisher
,
T.
, and
Gibbin
,
K. P.
,
2008
,
Blast Injury of the Ear
, Ministry of Defence,
Edinburgh
, Scotland.
55.
Roberto
,
M.
,
Hamernik
,
R. P.
, and
Turrentine
,
G. A.
,
1989
, “
Damage of the Auditory System Associated With Acute Blast Trauma
,”
Ann. Otol. Rhinol. Laryngol.
,
98
(
5_suppl
), pp.
23
34
.10.1177/00034894890980S506
56.
Howe
,
L. L. S.
,
2009
, “
Giving Context to Post-Deployment Post-Concussive-Like Symptoms: Blast-Related Potential Mild Traumatic Brain Injury and Comorbidities
,”
Clin. Neuropsychol.
,
23
(
8
), pp.
1315
1337
.10.1080/13854040903266928
57.
Ellaham
,
N. N.
,
Akache
,
F.
,
Robert
,
W.
,
Funnell
,
J.
, and
Daniel
,
S. J.
,
2007
, “
Experimental Study of the Effects of Drying on Middle-Ear Vibrations in the Gerbil
,”
CMBES Proceedings
, Vancouver, BC, Canada, pp.
1
4
.https://proceedings.cmbes.ca/index.php/proceedings/article/view/141
58.
Voss
,
S. E.
,
Rosowski
,
J. J.
,
Merchant
,
S. N.
, and
Peake
,
W. T.
,
2000
, “
Acoustic Responses of the Human Middle Ear
,”
Hear. Res.
,
150
(
1–2
), pp.
43
69
.10.1016/S0378-5955(00)00177-5
59.
Maftoon
,
N.
,
Funnell
,
W. R. J.
,
Daniel
,
S. J.
, and
Decraemer
,
W. F.
,
2013
, “
Experimental Study of Vibrations of Gerbil Tympanic Membrane With Closed Middle Ear Cavity
,”
J. Assoc. Res. Otolaryngol.
,
14
(
4
), pp.
467
481
.10.1007/s10162-013-0389-9
60.
Rosowski
,
J. J.
,
Cheng
,
J. T.
,
Ravicz
,
M. E.
,
Hulli
,
N.
,
Hernandez-Montes
,
M.
,
Harrington
,
E.
, and
Furlong
,
C.
,
2009
, “
Computer-Assisted Time-Averaged Holograms of the Motion of the Surface of the Mammalian Tympanic Membrane With Sound Stimuli of 0.4-25 KHz
,”
Hear. Res.
,
253
(
1–2
), pp.
83
96
.10.1016/j.heares.2009.03.010
61.
Huq
,
S.
,
Koschan
,
A.
, and
Abidi
,
M.
,
2013
, “
Occlusion Filling in Stereo: Theory and Experiments
,”
Comput. Vision Image Understand.
,
117
(
6
), pp.
688
704
.10.1016/j.cviu.2013.01.008
You do not currently have access to this content.