Abstract

The media, a primary layer of the aortic wall, is rich in smooth muscle cells (SMCs) that regulate the vessel diameter and maintain the mechanical balance of the aortic ring in vivo. Embedded in the medial extracellular matrix, SMCs adapt to their surrounding mechanical environment via cyclic stretch during vascular contraction and relaxation. Thus, the circumferential stress that constantly acts on the hypertensive aorta is expected to further increase with increasing blood pressure (hypertension), resulting in a thickened medial wall. This thickening is considered an active biomechanical response of SMCs to maintain constant circumferential stress, ensuring homeostasis. Therefore, understanding how external forces or mechanical stimuli acting on SMCs are transmitted through intracellular components is crucial. Nuclei may sense mechanical changes through stress fibers (SFs) and focal adhesions (FAs). However, limited quantitative information exists regarding the mechanical contributions of SFs and FAs to whole-cell mechanical events, such as the response to uniaxial stretching. In this study, we developed a finite element model of a cultured vascular SMC with contractile SFs anchored on a silicone substrate via FAs and applied uniaxial stretching to investigate the mechanotransduction pathways in SMCs. We revealed that the initial orientation angle of the cell relative to the stretching direction strongly correlated with the resultant magnitude of the biomechanical forces acting on the nuclei surface exerted by the SFs.

References

1.
Lomakin
,
A. J.
,
Cattin
,
C. J.
,
Cuvelier
,
D.
,
Alraies
,
Z.
,
Molina
,
M.
,
Nader
,
G. P. F.
,
Srivastava
,
N.
, et al.,
2020
, “
The Nucleus Acts as a Ruler Tailoring Cell Responses to Spatial Constraints
,”
Science
,
370
(
6514
), p.
eaba2894
.10.1126/science.aba2894
2.
Venturini
,
V.
,
Pezzano
,
F.
,
Català Castro
,
F.
,
Häkkinen
,
H. M.
,
Jiménez-Delgado
,
S.
,
Colomer-Rosell
,
M.
,
Marro
,
M.
, et al.,
2020
, “
The Nucleus Measures Shape Changes for Cellular Proprioception to Control Dynamic Cell Behavior
,”
Science
,
370
(
6514
), p.
eaba2644
.10.1126/science.aba2644
3.
Engler
,
A. J.
,
Sen
,
S.
,
Sweeney
,
H. L.
, and
Discher
,
D. E.
,
2006
, “
Matrix Elasticity Directs Stem Cell Lineage Specification
,”
Cell
,
126
(
4
), pp.
677
689
.10.1016/j.cell.2006.06.044
4.
Nagayama
,
K.
,
Uchida
,
K.
, and
Sato
,
A.
,
2019
, “
A Novel Micro-Grooved Collagen Substrate for Inducing Vascular Smooth Muscle Differentiation Through Cell Tissue Arrangement and Nucleus Remodeling
,”
J. Mech. Behav. Biomed. Mater.
,
90
, pp.
295
305
.10.1016/j.jmbbm.2018.10.005
5.
Nagayama
,
K.
, and
Matsumoto
,
T.
,
2011
, “
Dynamic Change in Morphology and Traction Forces at Focal Adhesions in Cultured Vascular Smooth Muscle Cells During Contraction
,”
Cell. Mol. Bioeng.
,
4
(
3
), pp.
348
357
.10.1007/s12195-011-0166-y
6.
Matsumoto
,
T.
,
Tsuchida
,
M.
, and
Sato
,
M.
,
1996
, “
Change in Intramural Strain Distribution in Rat Aorta Due to Smooth Muscle Contraction/Relaxation
,”
Am. J. Physiol.
,
271
(
4
), pp.
H1711
H1716
.10.1152/ajpheart.1996.271.4.H1711
7.
Nagayama
,
K.
,
Yamazaki
,
S.
,
Yahiro
,
Y.
, and
Matsumoto
,
T.
,
2014
, “
Estimation of the Mechanical Connection Between Apical Stress Fibers and the Nucleus in Vascular Smooth Muscle Cells Cultured on a Substrate
,”
J. Biomech.
,
47
(
6
), pp.
1422
1429
.10.1016/j.jbiomech.2014.01.042
8.
Deguchi
,
S.
,
Ohashi
,
T.
, and
Sato
,
M.
,
2006
, “
Tensile Properties of Single Stress Fibers Isolated From Cultured Vascular Smooth Muscle Cells
,”
J. Biomech.
,
39
(
14
), pp.
2603
2610
.10.1016/j.jbiomech.2005.08.026
9.
Costa
,
K. D.
,
Hucker
,
W. J.
, and
Yin
,
F. C.-P.
,
2002
, “
Buckling of Actin Stress Fibers: A New Wrinkle in the Cytoskeletal Tapestry
,”
Cell Motil. Cytoskeleton
,
52
(
4
), pp.
266
274
.10.1002/cm.10056
10.
Nagayama
,
K.
, and
Matsumoto
,
T.
,
2010
, “
Estimation of Single Stress Fiber Stiffness in Cultured Aortic Smooth Muscle Cells Under Relaxed and Contracted States: Its Relation to Dynamic Rearrangement of Stress Fibers
,”
J. Biomech.
,
43
(
8
), pp.
1443
1449
.10.1016/j.jbiomech.2010.02.007
11.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. B
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
12.
Cramer
,
L. P.
,
Siebert
,
M.
, and
Mitchison
,
T. J.
,
1997
, “
Identification of Novel Graded Polarity Actin Filament Bundles in Locomoting Heart Fibroblasts: Implications for the Generation of Motile Force
,”
J. Cell Biol.
,
136
(
6
), pp.
1287
1305
.10.1083/jcb.136.6.1287
13.
Murtada
,
S. C.
,
Arner
,
A.
, and
Holzapfel
,
G. A.
,
2012
, “
Experiments and Mechanochemical Modeling of Smooth Muscle Contraction: Significance of Filament Overlap
,”
J. Theor. Biol.
,
297
, pp.
176
186
.10.1016/j.jtbi.2011.11.012
14.
Tan
,
T.
, and
Vita
,
R. D.
,
2015
, “
A Structural Constitutive Model for Smooth Muscle Contraction in Biological Tissues
,”
Int. J. Non-Linear Mech.
,
75
, pp.
46
53
.10.1016/j.ijnonlinmec.2015.02.009
15.
Dillon
,
P. F.
,
Aksoy
,
M. O.
,
Driska
,
S. P.
, and
Murphy
,
R. A.
,
1981
, “
Myosin Phosphorylation and the Cross-Bridge Cycle in Arterial Smooth Muscle
,”
Science
,
211
(
4481
), pp.
495
497
.10.1126/science.6893872
16.
Warshaw
,
D. M.
,
1987
, “
Force: Velocity Relationship in Single Isolated Toad Stomach Smooth Muscle Cells
,”
J. Gen. Physiol.
,
89
(
5
), pp.
771
789
.10.1085/jgp.89.5.771
17.
Wittek
,
A.
,
Kajzer
,
J.
, and
Haug
,
E.
,
2000
, “
Hill-Type Muscle Model for Analysis of Mechanical Effect of Muscle Tension on the Human Body Response in a Car Collision Using an Explicit Finite Element Code
,”
JSME Int. J. Ser. A
,
43
(
1
), pp.
8
18
.10.1299/jsmea.43.8
18.
Sato
,
M.
,
2010
, “
Biomechanics on Mechanosensing Mechanisms of Cells
,”
Proceedings of the 59th National Congress of Theoretical and Applied Mechanics
,
Tokyo, Japan
, June 8–10, Paper No. PD1 (in Japanese).
19.
Tamura
,
A.
,
Makabe
,
K.
,
Yamashita
,
H.
, and
Hongu
,
J.
,
2021
, “
Finite Element Model of a Cultured Vascular Smooth Muscle Cell Subjected to Uniaxial Stretch: Effect of Orientation Angle of Stress Fibers on Biomechanical Responses
,”
ASME
Paper No. IMECE2021-68844.10.1115/IMECE2021-68844
20.
Newberg
,
J.
,
Schimpf
,
J.
,
Woods
,
K.
,
Loisate
,
S.
,
Davis
,
P. H.
, and
Uzer
,
G.
,
2020
, “
Isolated Nuclei Stiffen in Response to Low Intensity Vibration
,”
J. Biomech.
,
111
, p.
110012
.10.1016/j.jbiomech.2020.110012
21.
Reynolds
,
N. H.
,
Ronan
,
W.
,
Dowling
,
E. P.
,
Owens
,
P.
,
McMeeking
,
R. M.
, and
McGarry
,
J. P.
,
2014
, “
On the Role of the Actin Cytoskeleton and Nucleus in the Biomechanical Response of Spread Cells
,”
Biomaterials
,
35
(
13
), pp.
4015
4025
.10.1016/j.biomaterials.2014.01.056
22.
Nagayama
,
K.
,
Ohata
,
S.
,
Obata
,
S.
, and
Sato
,
A.
,
2020
, “
Macroscopic and Microscopic Analysis of the Mechanical Properties and Adhesion Force of Cells Using a Single Cell Tensile Test and Atomic Force Microscopy: Remarkable Differences in Cell Types
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103935
.10.1016/j.jmbbm.2020.103935
23.
Nagayama
,
K.
,
2015
, “
Quantitative Analysis of Cellular Traction Forces Using a Micropillar Substrate and Estimation of the Intracellular Force Applied to the Nucleus
,”
Trans. JSME (in Japanese)
,
81
(
824
), p. 14-00692.10.1299/transjsme.14-00692
24.
Wolinsky
,
H.
,
1971
, “
Effects of Hypertension and Its Reversal on the Thoracic Aorta of Male and Female Rats. Morphological and Chemical Studies
,”
Circ. Res.
,
28
(
6
), pp.
622
637
.10.1161/01.RES.28.6.622
25.
Sugita
,
S.
,
Kato
,
M.
,
Fukui
,
W.
, and
Nakamura
,
M.
,
2020
, “
Three-Dimensional Analysis of the Thoracic Aorta Microscopic Deformation During Intraluminal Pressurization
,”
Biomech. Model. Mechanobiol.
,
19
(
1
), pp.
147
157
.10.1007/s10237-019-01201-w
26.
Sugita
,
S.
,
Mizuno
,
N.
,
Ujihara
,
Y.
, and
Nakamura
,
M.
,
2021
, “
Stress Fibers of the Aortic Smooth Muscle Cells in Tissues Do Not Align With the Principal Strain Direction During Intraluminal Pressurization
,”
Biomech. Model. Mechanobiol.
,
20
(
3
), pp.
1003
1011
.10.1007/s10237-021-01427-7
27.
Neidlinger-Wilke
,
C.
,
Grood
,
E. S.
,
Wang
,
J. H.-C.
,
Brand
,
R. A.
, and
Claes
,
L.
,
2001
, “
Cell Alignment Is Induced by Cyclic Changes in Cell Length: Studies of Cells Grown in Cyclically Stretched Substrates
,”
J. Orthop. Res.
,
19
(
2
), pp.
286
293
.10.1016/S0736-0266(00)00029-2
28.
Jungbauer
,
S.
,
Gao
,
H.
,
Spatz
,
J. P.
, and
Kemkemer
,
R.
,
2008
, “
Two Characteristic Regimes in Frequency-Dependent Dynamic Reorientation of Fibroblasts on Cyclically Stretched Substrates
,”
Biophys. J.
,
95
(
7
), pp.
3470
3478
.10.1529/biophysj.107.128611
29.
Nagayama
,
K.
,
Kimura
,
Y.
,
Makino
,
N.
, and
Matsumoto
,
T.
,
2012
, “
Strain Waveform Dependence of Stress Fiber Reorientation in Cyclically Stretched Osteoblastic Cells: Effects of Viscoelastic Compression of Stress Fibers
,”
Am. J. Physiol. Cell Physiol.
,
302
(
10
), pp.
C1469
C1478
.10.1152/ajpcell.00155.2011
30.
Starr
,
D. A.
, and
Han
,
M.
,
2003
, “
ANChors Away: An Actin Based Mechanism of Nuclear Positioning
,”
J. Cell Sci.
,
116
(
2
), pp.
211
216
.10.1242/jcs.00248
31.
Kuo
,
K. H.
, and
Seow
,
C. Y.
,
2004
, “
Contractile Filament Architecture and Force Transmission in Swine Airway Smooth Muscle
,”
J. Cell Sci.
,
117
(
8
), pp.
1503
1511
.10.1242/jcs.00996
32.
Tamura
,
A.
,
Matsumoto
,
K.
, and
Hongu
,
J.
,
2023
, “
Computational Modeling of an Aortic Medial Wall: Effect of Residual Stresses on a Mechanical Behavior of the Aortic Ring
,”
ASME J. Med. Diagn.
,
6
(
4
), p.
041006
.10.1115/1.4063140
33.
Tamura
,
A.
, and
Matsumoto
,
K.
,
2024
, “
Computational Modeling of a Layered Aortic Medial Wall Considering Effective Residual Stresses
,”
J. Mech. Med. Biol.
,
24
(
1
), p.
2350090
.10.1142/S0219519423500902
34.
Tamura
,
A.
, and
Matsumoto
,
K.
,
2025
, “
Effects of Implemented Residual Stresses on Mechanical Responses and Behavior of the Full-Layered Murine Aortic Medial Ring: A Parametric Finite Element Study
,”
Cardiovasc. Eng. Technol.
,
16
(
1
), pp.
91
107
.10.1007/s13239-024-00759-6
You do not currently have access to this content.