Abstract

Radio frequency ablation (RFA) is an alternative method for the cure of malign tumors in the liver, lung, and kidney. In the present work, finite element method (FEM) analysis is conducted to study the effect of nanoparticles on the temporal and spatial temperature distribution during RFA. Three-dimensional thermoelectrically FEM model consisting of a multitined radio frequency electrode (nine-tine, deployed up to 2 cm) and a cubical tumor of size 50 mm3 is developed. Numerical simulation is carried out under the temperature-controlled mode (95 °C) with 10 min ablation time. A study using multitined electrodes is carried out on different tissues, i.e., lung and kidney, with and without nanoparticles. Results show that the nanoparticles increase the heat conduction rate and decrease the ablation time up to 13% for the inclusion of 6% nanoparticles. It has been found that the spatial temperature distribution becomes uniform with nanoparticle assistance.

References

1.
Uma Devi
,
K.
,
2009
, “
Current Status of Gynecological Cancer Care in India
,”
J. Gynecol. Oncol.
,
20
(
2
), pp.
77
80
.10.3802/jgo.2009.20.2.77
2.
Chu
,
K. F.
, and
Dupuy
,
D. E.
,
2014
, “
Thermal Ablation of Tumors: Biological Mechanisms and Advances in Therapy
,”
Nat. Rev. Cancer
,
14
(
3
), pp.
199
208
.10.1038/nrc3672
3.
Zhu
,
J. C.
,
Yan
,
T. D.
, and
Morris
,
D. L.
,
2008
, “
A Systematic Review of Radiofrequency Ablation for Lung Tumors
,”
Ann. Surg. Oncol.
,
15
(
6
), pp.
1765
1774
.10.1245/s10434-008-9848-7
4.
Berjano
,
E. J.
,
2006
, “
Theoretical Modeling for Radiofrequency Ablation: State-of-the-Art and Challenges for the Future
,”
Biomed. Eng. Online
,
5
(
1
), p.
24
.10.1186/1475-925X-5-24
5.
Mirza
,
A. N.
,
Fornage
,
B. D.
,
Sneige
,
N.
,
Kuerer
,
H. M.
,
Newman
,
L. A.
,
Ames
,
F. C.
, and
Singletary
,
S. E.
,
2001
, “
Radiofrequency Ablation of Solid Tumors
,”
Cancer J.
,
7
(
2
), pp.
95
102
.https://pubmed.ncbi.nlm.nih.gov/11324771/#:~:text=Radiofrequency%20ablation%20of%20solid%20tumors%20is%20produced%20by%20frictional%20heating,a%20high%2Dfrequency%20alternating%20current
6.
Facciorusso
,
A.
,
Di Maso
,
M.
, and
Muscatiello
,
N.
,
2016
, “
Microwave Ablation Versus Radiofrequency Ablation for the Treatment of Hepatocellular Carcinoma: A Systematic Review and Meta Analysis
,”
Int. J. Hyperthermia
,
32
(
3
), pp.
339
344
.10.3109/02656736.2015.1127434
7.
Zhang
,
B.
,
Moser
,
M. A. J.
,
Zhang
,
E. M.
,
Luo
,
Y.
,
Liu
,
C.
, and
Zhang
,
W.
,
2016
, “
A Review of Radiofrequency Ablation: Large Target Tissue Necrosis and Mathematical Modelling
,”
Phys. Medica
,
32
(
8
), pp.
961
971
.10.1016/j.ejmp.2016.07.092
8.
Brace
,
C. L.
,
2009
, “
Radiofrequency and Microwave Ablation of the Liver, Lung, Kidney, and Bone: What Are the Differences?
,”
Curr. Probl. Diagn. Radiol.
,
38
(
3
), pp.
135
143
.10.1067/j.cpradiol.2007.10.001
9.
Huang
,
H.-W.
,
2013
, “
Influence of Blood Vessel on the Thermal Lesion Formation During Radiofrequency Ablation for Liver Tumors
,”
Med. Phys.
,
40
(
7
), p.
073303
.10.1118/1.4811135
10.
Chang
,
I.
,
2003
, “
Finite Element Analysis of Hepatic Radiofrequency Ablation Probes Using Temperature-Dependent Electrical Conductivity
,”
Biomed. Eng. Online
,
2
(
1
), p.
12
.10.1186/1475-925X-2-12
11.
Jain
,
M. K.
, and
Wolf
,
P. D.
,
1999
, “
Temperature Controlled and Constant Power Radiofrequency Ablation: What Affects Lesion Growth?
,”
IEEE Trans. Biomed. Eng.
,
46
(
12
), pp.
1405
1412
.10.1109/10.804568
12.
Tungjitkusolmun
,
S.
,
Staelin
,
S. T.
,
Haemmerich
,
D.
,
Tsai
,
J. Z.
,
Cao
,
H.
,
Webster
,
J. G.
,
Lee
,
F. T.
,
Mahvi
,
D. M.
, and
Vorperian
,
V. R.
,
2002
, “
Three-Dimensional Finite Element Analyses for Radio Frequency Hepatic Tumor Ablation
,”
IEEE Trans. Biomed. Eng.
,
49
(
1
), pp.
3
9
.10.1109/10.972834
13.
Haemmerich
,
D.
, and
Webster
,
J. G.
,
2005
, “
Automatic Control of Finite Element Models for Temperature-Controlled Radiofrequency Ablation
,”
Biomed. Eng. Online
,
4
(
1
), pp.
1
8
.10.1186/1475-925X-4-42
14.
Alba-Martínez
,
J.
,
Trujillo
,
M.
,
Blasco-Giménez
,
R.
, and
Berjano
,
E.
,
2011
, “
Could It Be Advantageous to Tune the Temperature Controller During Radiofrequency Ablation? A Feasibility Study Using Theoretical Models
,”
Int. J. Hyperthermia
,
27
(
6
), pp.
539
548
.10.3109/02656736.2011.586665
15.
Zorbas
,
G.
, and
Samaras
,
T.
,
2014
, “
Simulation of Radiofrequency Ablation in Real Human Anatomy
,”
Int. J. Hyperthermia
,
30
(
8
), pp.
570
578
.10.3109/02656736.2014.968639
16.
Ng
,
E. Y. K.
, and
Jamil
,
M.
,
2014
, “
Parametric Sensitivity Analysis of Radiofrequency Ablation With Efficient Experimental Design
,”
Int. J. Therm. Sci.
,
80
(
1
), pp.
41
47
.10.1016/j.ijthermalsci.2014.01.024
17.
Zhang
,
B.
,
Moser
,
M. A. J.
,
Zhang
,
E. M.
,
Luo
,
Y.
, and
Zhang
,
W.
,
2015
, “
Numerical Analysis of the Relationship Between the Area of Target Tissue Necrosis and the Size of Target Tissue in Liver Tumors With Pulsed Radiofrequency Ablation
,”
Int. J. Hyperthermia
,
31
(
7
), pp.
715
725
.10.3109/02656736.2015.1058429
18.
Zorbas
,
G.
, and
Samaras
,
T.
,
2015
, “
A Study of the Sink Effect by Blood Vessels in Radiofrequency Ablation
,”
Comput. Biol. Med.
,
57
, pp.
182
186
.10.1016/j.compbiomed.2014.12.014
19.
Singh
,
S.
, and
Repaka
,
R.
,
2017
, “
Temperature-Controlled Radiofrequency Ablation of Different Tissues Using Two-Compartment Models
,”
Int. J. Hyperthermia
,
33
(
2
), pp.
122
134
.10.1080/02656736.2016.1223890
20.
Andreozzi
,
A.
,
Brunese
,
L.
,
Iasiello
,
M.
,
Tucci
,
C.
, and
Vanoli
,
G. P.
,
2021
, “
Numerical Investigation of a Thermal Ablation Porous Media Based Model for Tumoral Tissue With Variable Porosity
,”
Computation
,
9
(
5
), p.
50
.10.3390/computation9050050
21.
Bianchi
,
L.
,
Cavarzan
,
F.
,
Ciampitti
,
L.
,
Cremonesi
,
M.
,
Grilli
,
F.
, and
Saccomandi
,
P.
,
2022
, “
Thermophysical and Mechanical Properties of Biological Tissue as a Function of Temperature: A Systematic Literature Review
,”
Int. J. Hyperthermia
,
39
(
1
), pp.
297
340
.10.1080/02656736.2022.2028908
22.
Tucci
,
C.
,
Trujillo
,
M.
,
Berjano
,
E.
,
Iasiello
,
M.
,
Andreozzi
,
A.
, and
Vanoli
,
G. P.
,
2021
, “
Pennes' Bioheat Equation vs. porous Media Approach in Computer Modeling of Radiofrequency Tumor Ablation
,”
Sci. Rep.
,
11
(
1
), p.
5272
.10.1038/s41598-021-84546-6
23.
Wu
,
L.
,
Cheng
,
J.
,
Liu
,
W.
, and
Chen
,
X.
,
2015
, “
Numerical Analysis of Electromagnetically Induced Heating and Bioheat Transfer for Magnetic Fluid Hyperthermia
,”
IEEE Trans. Magn.
,
51
(
2
), pp.
1
4
.10.1109/TMAG.2014.2358268
24.
Pennes
,
H. H.
,
1998
, “
Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm
,”
J. Appl. Physiol.
,
85
(
1
), pp.
5
34
.10.1152/jappl.1998.85.1.5
25.
Wang
,
X.
, and
Mujumdar
,
A. S.
,
2008
, “
A Review on Nanofluids-Part I: Theoretical and Numerical Investigations
,”
Braz. J. Chem. Eng.
,
25
(
4
), pp.
613
630
.10.1590/S0104-66322008000400001
You do not currently have access to this content.