Abstract

This study investigates the structural and hemodynamic behavior of bioresorbable polylactic acid (PLA)-based stent designs for applications in treating coronary artery disease. Three stent designs were chosen and their geometry was modeled in SolidWorks and appropriate meshing was done before importing into the finite element analysis platform (ANSYS). The behavior of the stent designs was analyzed for structural loading conditions equivalent to human arterial blood pressure and similarly, the hemodynamic analysis was carried out under conditions simulating the blood flow. The stent porosity, structural stresses, wall shear stresses (WSS) and the velocity were analyzed, and the results from this multiphysics analysis show that the stresses occurring in the modified cordis stent (MCS) design present a maximum von Mises stress (273.01 MPa). Besides, the maximum WSS of 12.67 Pa is obtained from the hemodynamic flow analysis. The current findings are in the line of literature data for the possible usage of PLA as stent materials that pose a reduced risk of restenosis.

References

1.
Murphy
,
J.
, and
Boyle
,
F.
,
2007
, “
Comparison of Stent Designs Using Computational Fluid Dynamics
,”
Tenth Annual Sir Bernard Crossland Symposium
, Galway, Dublin, Mar. 28–29, p.
15
.https://arrow.tudublin.ie/cgi/viewcontent.cgi?article=1028&context=engschmeccon
2.
Chen
,
W. X.
,
Poon
,
E. K. W.
,
Thondapu
,
V.
,
Hutchins
,
N.
,
Barlis
,
P.
, and
Ooi
,
A.
,
2017
, “
Haemodynamic Effects of Incomplete Stent Apposition in Curved Coronary Arteries
,”
J. Biomech.
,
63
, pp.
164
173
.10.1016/j.jbiomech.2017.09.016
3.
Brown
,
J.
,
O'Brien
,
C. C.
,
Lopes
,
A. C.
,
Kolandaivelu
,
K.
, and
Edelman
,
E. R.
,
2018
, “
Quantification of Thrombus Formation in Malapposed Coronary Stents Deployed In Vitro Through Imaging Analysis
,”
J. Biomech.
,
71
, pp.
296
301
.10.1016/j.jbiomech.2018.01.044
4.
Zhao
,
S.
,
Gu
,
L.
, and
Froemming
,
S. R.
,
2012
, “
Performance of Self-Expanding Nitinol Stent in a Curved Artery: Impact of Stent Length and Deployment Orientation
,”
ASME J. Biomech. Eng.
,
134
(
7
), p. 071007.10.1115/1.4007095
5.
Buccheri
,
D.
,
Piraino
,
D.
,
Andolina
,
G.
, and
Cortese
,
B.
,
2016
, “
Understanding and Managing in-Stent Restenosis: A Review of Clinical Data, From Pathogenesis to Treatment
,”
J. Thorac. Dis.
,
8
(
10
), pp.
E1150
E1162
.10.21037/jtd.2016.10.93
6.
Oklu
,
R.
,
2017
, “
Thrombosis
,”
Cardiovasc. Diagn. Ther.
,
7
(
S3
), pp.
S131
S133
.10.21037/cdt.2017.11.08
7.
Migliavacca
,
F.
,
Petrini
,
L.
,
Massarotti
,
P.
,
Schievano
,
S.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2004
, “
Stainless and Shape Memory Alloy Coronary Stents: A Computational Study on the Interaction With the Vascular Wall
,”
Biomech. Model. Mechanobiol.
,
2
(
4
), pp.
205
217
.10.1007/s10237-004-0039-6
8.
Mongrain
,
R.
,
Faik
,
I.
,
Leask
,
R. L.
,
Rodés-Cabau
,
J.
,
Larose
,
É.
, and
Bertrand
,
O. F.
,
2007
, “
Effects of Diffusion Coefficients and Struts Apposition Using Numerical Simulations for Drug Eluting Coronary Stents
,”
ASME J. Biomech. Eng.
,
129
(
5
), pp.
733
742
.10.1115/1.2768381
9.
Fornell
,
D.
,
2020
, “
Bioresorbable Stents Are the Way of the Future
,” Diagnostic and Interventional Cardiology, Lincolnshire, IL, accessed June 28, 2020, https://www.dicardiology.com/article/bioresorbable-stents-are-way-future
10.
Fu
,
J.
,
Su
,
Y.
,
Qin
,
Y.-X.
,
Zheng
,
Y.
,
Wang
,
Y.
, and
Zhu
,
D.
,
2020
, “
Evolution of Metallic Cardiovascular Stent Materials: A Comparative Study Among Stainless Steel, Magnesium and Zinc
,”
Biomaterials
,
230
, p.
119641
.10.1016/j.biomaterials.2019.119641
11.
Tu
,
Q.
,
Zhao
,
X.
,
Liu
,
S.
,
Li
,
X.
,
Zhang
,
Q.
,
Yu
,
H.
,
Xiong
,
K.
,
Huang
,
N.
, and
Yang
,
Z.
,
2020
, “
Spatiotemporal Dual-Delivery of Therapeutic Gas and Growth Factor for Prevention of Vascular Stent Thrombosis and Restenosis
,”
Appl. Mater. Today
,
19
, p.
100546
10.1016/j.apmt.2019.100546
12.
Gu
,
X.
,
Mao
,
Z.
,
Ye
,
S.-H.
,
Koo
,
Y.
,
Yun
,
Y.
,
Tiasha
,
T. R.
,
Shanov
,
V.
, and
Wagner
,
W. R.
,
2016
, “
Biodegradable, Elastomeric Coatings With Controlled Anti-Proliferative Agent Release for Magnesium-Based Cardiovascular Stents
,”
Colloids Surf. B Biointerfaces
,
144
, pp.
170
179
.10.1016/j.colsurfb.2016.03.086
13.
Kereiakes
,
D. J.
,
Choo
,
J. K.
,
Young
,
J. J.
, and
Broderick
,
T. M.
,
2004
, “
Thrombosis and Drug-Eluting Stents: A Critical Appraisal
,”
Rev. Cardiovasc. Med.
,
5
(
1
), pp.
9
15
.https://rcm.imrpress.com/EN/Y2004/V5/I1/9
14.
Robertson
,
S.
,
2009
, “
Drug-Eluting Stent Risks
,” News Medical Life Sciences, Online, accessed June 28, 2020, https://www.news-medical.net/health/Drug-Eluting-Stent-Risks.aspx
15.
Mukherjee
,
D.
,
2017
, “
Device Thrombosis With Bioresorbable Scaffolds
,”
N. Engl. J. Med.
,
376
(
24
), pp.
2388
2389
.10.1056/NEJMe1703202
16.
Petrini
,
L.
,
Migliavacca
,
F.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2004
, “
Numerical Investigation of the Intravascular Coronary Stent Flexibility
,”
J. Biomech.
,
37
(
4
), pp.
495
501
.10.1016/j.jbiomech.2003.09.002
17.
Hung
,
T.-K.
, and
Tsai
,
T. M.-C.
,
1996
, “
Pulsatile Blood Flows in Stenotic Artery
,”
J. Eng. Mech.
,
122
(
9
), pp.
890
896
.10.1061/(ASCE)0733-9399(1996)122:9(890)
18.
Hung
,
T.-K.
, and
Tsai
,
T. M.-C.
,
1997
, “
Kinematic and Dynamic Characteristics of Pulsatile Flows in Stenotic Vessels
,”
J. Eng. Mech.
,
123
(
3
), pp.
247
259
.10.1061/(ASCE)0733-9399(1997)123:3(247)
19.
Schoephoerster
,
R. T.
,
Silva
,
C. L.
, and
Ray
,
G.
,
1993
, “
Finite Analytic Model for Left Ventricular Systolic Flow Dynamics
,”
J. Eng. Mech.
,
119
(
4
), pp.
733
747
.10.1061/(ASCE)0733-9399(1993)119:4(733)
20.
Rogers
,
C.
, and
Edelman
,
E. R.
,
1995
, “
Endovascular Stent Design Dictates Experimental Restenosis and Thrombosis
,”
Circulation
,
91
(
12
), pp.
2995
3001
.10.1161/01.CIR.91.12.2995
21.
Torki
,
M. M.
,
Hassanajili
,
S.
, and
Jalisi
,
M. M.
,
2020
, “
Design Optimizations of PLA Stent Structure by FEM and Investigating Its Function in a Simulated Plaque Artery
,”
Math. Comput. Simul.
,
169
, pp.
103
116
.10.1016/j.matcom.2019.09.011
22.
Chen
,
C.
,
Xiong
,
Y.
,
Jiang
,
W.
,
Wang
,
Y.
,
Wang
,
Z.
, and
Chen
,
Y.
,
2020
, “
Experimental and Numerical Simulation of Biodegradable Stents With Different Strut Geometries
,”
Cardiovasc. Eng. Technol.
,
11
(
1
), pp.
36
46
.10.1007/s13239-019-00433-2
23.
Grogan
,
J. A.
,
Leen
,
S. B.
, and
McHugh
,
P. E.
,
2013
, “
Optimizing the Design of a Bioabsorbable Metal Stent Using Computer Simulation Methods
,”
Biomaterials
,
34
(
33
), pp.
8049
8060
.10.1016/j.biomaterials.2013.07.010
24.
Pauck
,
R. G.
, and
Reddy
,
B. D.
,
2015
, “
Computational Analysis of the Radial Mechanical Performance of PLLA Coronary Artery Stents
,”
Med. Eng. Phys.
,
37
(
1
), pp.
7
12
.10.1016/j.medengphy.2014.09.014
25.
Rebelo
,
R.
,
Vila
,
N.
,
Fangueiro
,
R.
,
Carvalho
,
S.
, and
Rana
,
S.
,
2015
, “
Influence of Design Parameters on the Mechanical Behavior and Porosity of Braided Fibrous Stents
,”
Mater. Des.
,
86
, pp.
237
247
.10.1016/j.matdes.2015.07.051
26.
Wu
,
W.
,
Wang
,
W.-Q.
,
Yang
,
D.-Z.
, and
Qi
,
M.
,
2007
, “
Stent Expansion in Curved Vessel and Their Interactions: A Finite Element Analysis
,”
J. Biomech.
,
40
(
11
), pp.
2580
2585
.10.1016/j.jbiomech.2006.11.009
27.
Balossino
,
R.
,
Gervaso
,
F.
,
Migliavacca
,
F.
, and
Dubini
,
G.
,
2008
, “
Effects of Different Stent Designs on Local Hemodynamics in Stented Arteries
,”
J. Biomech.
,
41
(
5
), pp.
1053
1061
.10.1016/j.jbiomech.2007.12.005
28.
Wang
,
C.
, and
Zhang
,
P.
,
2016
, “
In Vitro Degradation Behaviors of PDO Monofilament and Its Intravascular Stents With Braided Structure
,”
Autex Res. J.
,
16
(
2
), pp.
80
89
.10.1515/aut-2015-0031
29.
Martin
,
D. M.
, and
Boyle
,
F.
,
2015
, “
Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis
,”
Cardiovasc. Eng. Technol.
,
6
(
3
), pp.
314
28
.10.1007/s13239-015-0219-9
30.
Ormiston
,
J. A.
,
Webster
,
M. W. I.
,
Ruygrok
,
P. N.
,
Stewart
,
J. T.
,
White
,
H. D.
, and
Scott
,
D. S.
,
1999
, “
Stent Deformation Following Simulated Side-Branch Dilatation: A Comparison of Five Stent Designs
,”
Catheter. Cardiovasc. Interv.
,
47
(
2
), pp.
258
264
.10.1002/(SICI)1522-726X(199906)47:2<258::AID-CCD27>3.0.CO;2-C
31.
Migliavacca
,
F.
,
Petrini
,
L.
,
Montanari
,
V.
,
Quagliana
,
I.
,
Auricchio
,
F.
, and
Dubini
,
G.
,
2005
, “
A Predictive Study of the Mechanical Behavior of Coronary Stents by Computer Modelling
,”
Med. Eng. Phys.
,
27
(
1
), pp.
13
18
.10.1016/j.medengphy.2004.08.012
32.
Guo
,
M.
,
Wang
,
L.
, and
Feng
,
W.
,
2017
, “
Effects of Tensile Stress on Degradation of Poly Lactic Stents
,”
Int. Core J. Eng.
,
3
(
1
), pp.
99
102
.https://www.semanticscholar.org/paper/Effects-of-Tensile-Stress-on-Degradation-of-Poly-Guo-Wang/1c54cc7ae8daccd13982d4056de036056166fa89
33.
Timmins
,
L. H.
,
Meyer
,
C. A.
,
Moreno
,
M. R.
, and
Moore
,
J. E.
,
2008
, “
Effects of Stent Design and Atherosclerotic Plaque Composition on Arterial Wall Biomechanics
,”
J. Endovasc. Ther.
,
15
(
6
), pp.
643
654
.10.1583/08-2443.1
34.
Farah
,
S.
,
Anderson
,
D. G.
, and
Langer
,
R.
,
2016
, “
Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review
,”
Adv. Drug Deliv. Rev.
,
107
, pp.
367
392
.10.1016/j.addr.2016.06.012
35.
Cui
,
X.
,
Ren
,
Q.
,
Qiao
,
A.
,
Li
,
G.
, and
Li
,
Z.
,
2017
, “
Fatigue Life Prediction of Stents in a Realistic Coronary Stenosis Model
,” The 8th International Conference on Computational Methods (
ICCM2017
), Guilin, Guangxi, July 25–29, pp.
130
141
.https://www.sci-en-tech.com/ICCM2017/PDFs/2189-9027-1-PB.pdf
36.
ANSYS
,
2013
, “
ANSYS Fluent Theory Guide
,”
ANSYS,
Canonsburg, PA.
37.
Fung
,
Y. C.
,
1984
,
Biodynamics: Circulation
,
Springer-Verlag
,
New York
.
38.
Akbar
,
N. S.
, and
Nadeem
,
S.
,
2014
, “
Carreau Fluid Model for Blood Flow Through a Tapered Artery With a Stenosis
,”
Ain Shams Eng. J.
,
5
(
4
), pp.
1307
1316
.10.1016/j.asej.2014.05.010
39.
Jung
,
H.
,
Park
,
J.-W.
, and
Park
,
C.-G.
,
2004
, “
Asymmetric Flows of Non-Newtonian Fluids in Symmetric Stenosed Artery
,”
Korea-Aust. Rheol. J.
,
16
(
2
), pp.
101
108
.https://www.koreascience.or.kr/article/JAKO200411922378239.page
40.
Kiousis
,
D. E.
,
Wulff
,
A. R.
, and
Holzapfel
,
G. A.
,
2009
, “
Experimental Studies and Numerical Analysis of the Inflation and Interaction of Vascular Balloon Catheter-Stent Systems
,”
Ann. Biomed. Eng.
,
37
(
2
), pp.
315
330
.10.1007/s10439-008-9606-9
41.
Masoumi Khalil Abad
,
E.
,
Pasini
,
D.
, and
Cecere
,
R.
,
2012
, “
Shape Optimization of Stress Concentration-Free Lattice for Self-Expandable Nitinol Stent-Grafts
,”
J. Biomech.
,
45
(
6
), pp.
1028
1035
.10.1016/j.jbiomech.2012.01.002
42.
Wang
,
X. M.
,
Zhou
,
Q. T.
,
Liu
,
H.
,
Li
,
L.
, and
Deng
,
C. H.
,
2012
, “
Analysis of the Compression Process and Dimensional Optimization of Self-Expanding Stent of a Nickel Titanium Alloy
,”
Mater. Werkst.
,
43
(
8
), pp.
719
724
.10.1002/mawe.201200919
43.
Kraiss
,
L. W.
,
Kirkman
,
T. R.
,
Kohler
,
T. R.
,
Zierler
,
B.
, and
Clowes
,
A. W.
,
1991
, “
Shear Stress Regulates Smooth Muscle Proliferation and Neointimal Thickening in Porous Polytetrafluoroethylene Grafts
,”
Arterioscler. Thromb. J. Vasc. Biol.
,
11
(
6
), pp.
1844
1852
.10.1161/01.ATV.11.6.1844
44.
Bassiouny
,
H. S.
,
Zarins
,
C. K.
,
Kadowaki
,
M. H.
, and
Glagov
,
S.
,
1994
, “
Hemodynamic Stress and Experimental Aortoiliac Atherosclerosis
,”
J. Vasc. Surg.
,
19
(
3
), pp.
426
434
.10.1016/S0741-5214(94)70069-9
45.
Malek
,
A. M.
,
Alper
,
S. L.
, and
Izumo
,
S.
,
1999
, “
Hemodynamic Shear Stress and Its Role in Atherosclerosis
,”
JAMA
,
282
(
21
), p.
2035
.10.1001/jama.282.21.2035
46.
Seo
,
T.
,
Schachter
,
L. G.
, and
Barakat
,
A. I.
,
2005
, “
Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents
,”
Ann. Biomed. Eng.
,
33
(
4
), pp.
444
456
.10.1007/s10439-005-2499-y
47.
Brown
,
C. H.
,
Leverett
,
L. B.
,
Lewis
,
C. W.
,
Alfrey
,
C. P.
, and
Hellums
,
J. D.
,
1975
, “
Morphological, Biochemical, and Functional Changes in Human Platelets Subjected to Shear Stress
,”
J. Lab. Clin. Med.
,
86
(
3
), pp.
462
471
.https://pubmed.ncbi.nlm.nih.gov/1151161/
You do not currently have access to this content.