The heart-lung machine has commonly been used to replace the functions of both the heart and lungs during open heart surgeries or implemented as extracorporeal membrane oxygenation (ECMO) to provide cardiopulmonary support of the heart and lungs. The traditional heart-lung system consists of multiple components and is bulky. It can only be used for relatively short-term support. The concept of the wearable artificial pump-lung is to combine the functions of the blood pumping and gas transfer in a single, compact unit for cardiopulmonary or respiratory support for patients suffering from cardiac failure or respiratory failure, or both, and to allow patients to be ambulatory. To this end, a wearable artificial lung (APL) device is being developed by integrating a magnetically levitated centrifugal impeller with a hollow fiber membrane bundle. In this study, we utilized a computational fluid dynamics based performance optimization with a heuristic scheme to derive geometrical design parameters for the wearable APL device. The configuration and dimensions of the impeller and the diffuser, the required surface area of fiber membranes and the overall geometrical dimensions of the blood flow path of the APL device were considered. The design optimization was iterated based on the fluid dynamic objective parameters (pressure head, pressure distribution, axial force acting on the impeller, shear stress), blood damage potential (hemolysis and platelet activation), and mass transfer (oxygen partial pressure and saturation). Through the design optimization, an optimized APL device was computationally derived. A physical prototype of the designed APL device was fabricated and tested in vitro. The experimental data showed that the optimized APL can provide adequate blood pumping and oxygen transfer over the range of intended operating conditions.

References

1.
Center for Disease Control and Prevention, National Vital Statistics Reports, Deaths: Final Data for 2007, Vol. 58(19), 2010.
2.
Bartlett
,
R. H.
, 2005, “
Extracorporeal Life Support: History and New Directions
,”
Semin. Perinatol.
,
29
(
1
), pp.
2
7
.
3.
Weinacker
,
A. B.
, and
Vaszar
,
L. T.
, 2001, “
Acute Respiratory Distress Syndrome: Physiology and New Management Strategies
,”
Annu. Rev. Med.
,
52
, pp.
221
237
.
4.
David
,
M.
, and
Heinrichs
,
W.
, 2004, “
High-Frequency Oscillatory Ventilation and an Interventional Lung Assist Device to Treat Hypoxaemia and Hypercapnia
,”
Br. J. Anaesth.
,
93
, pp.
582
586
.
5.
Fischer
,
S.
,
Simon
,
A. R.
,
Welte
,
T.
,
Hoeper
,
M. M.
,
Meyer
,
A.
,
Tessmann
,
R.
,
Gohrbandt
,
B.
,
Gottlieb
,
J.
,
Haverich
,
A.
, and
Strueber
,
M.
, 2006, “
Bridge to Lung Transplantation With the Novel Pumpless Interventional Lung Assist Device Nova Lung
,”
J. Thorac. Cardiovasc. Surg.
,
131
, pp.
719
723
.
6.
Lick
,
S. D.
, and
Zwischenberger
,
J. B.
, 2004, “
Artificial Lung: Bench Toward Bedside
,”
ASAIO J.
,
50
(
1
), pp.
2
5
.
7.
Fraser
,
K. H.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2011, “
The Use of Computational Fluid Dynamics in the Development of Ventricular Assist Device
,”
Med. Eng. Phys.
,
33
(
3
), pp.
263
280
.
8.
Burgreen
,
G. W.
,
Antaki
,
J. F.
, and
Griffith
,
B. P.
, 2001, “
Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps
,”
Artif. Organs
,
25
, pp.
336
340
.
9.
Arvand
,
A.
,
Hahn
,
N.
,
Hormes
,
M.
,
Akdis
,
M.
,
Martin
,
M.
, and
Reul
,
H.
, 2004, “
Comparison of Hydraulic and Hemolytic Properties of Different Impeller Designs of an Implantable Rotary Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
28
(
10
), pp.
892
898
.
10.
Curtas
,
A. R.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
McDaniel
,
J. C.
,
Day
,
S. W.
, and
Olsen
,
D. B.
, 2002, “
Computational Fluid Dynamics Modeling of Impeller Designs for the HeartQuest Left Ventricular Assist Device
,”
ASAIO J.
,
48
, pp.
552
561
.
11.
Anderson
,
J. B.
,
Wood
,
H. G.
,
Allaire
,
P. E.
,
Bearnson
,
G.
, and
Khanwilkar
,
P.
, 2000, “
Computational Flow Study of the Continuous Flow Ventricular Assist Device, Prototype Number 3 Blood Pump
,”
Artif. Organs
,
24
(
5
), pp.
377
385
.
12.
Miyazoe
,
Y.
,
Sawairi
,
T.
,
Ito
,
K.
,
Konishi
,
Y.
,
Yamane
,
T.
,
Nishida
,
M.
,
Masuzawa
,
T.
,
Takiura
,
K.
, and
Taenaka
,
Y.
, 1998, “
Computational Fluid Dynamic Analyses to Establish design Process of Centrifugal Blood Pumps
,”
Artif. Organs
,
22
(
5
), pp.
381
385
.
13.
Triep
,
M.
,
Brucker
,
C.
,
Shroder
,
W.
, and
Siess
,
T.
, 2006, “
Computational Fluid Dynamics and Digital Particle Image Velocimetry Study of the Flow Through an Optimized Micro-Axial Blood Pump
,”
Artif. Organs
,
30
(
5
), pp.
384
391
.
14.
Throckmorton
,
A. L.
,
Lim
,
D. S.
,
McCulloch
,
M. A.
,
Jiang
,
W.
,
Song
,
X.
,
Allaire
,
P. E.
,
Wood
,
H. G.
, and
Olsen
,
D. B.
, 2005, “
Computational Design and Experimental Performance Testing of an Axial-Flow Pediatric Ventricular Assist Device
,”
ASAIO J.
,
51
(
5
), pp.
629
635
.
15.
Okamoto
,
E.
,
Hashimoto
,
T.
,
Inoue
,
T.
, and
Mitamura
,
Y.
, 2003, “
Blood Compatible Design of a Pulsatile Blood Pump Using Computational Fluid Dynamics and Computer-Aided Design and Manufacturing Technology
,”
Artif. Organs
,
27
(
1
), pp.
61
67
.
16.
Zhang
,
Y.
,
Xue
,
S.
,
Gui
,
X. M.
,
Sun
,
H. S.
,
Zhang
,
H.
,
Zhu
,
X. D.
, and
Hu
,
S. S.
, 2007, “
A Novel Integrated Rotor of Axial Blood Flow Pump Designed With Computational Fluid Dynamics
,”
Artif. Organs
,
31
(
7
), pp.
580
585
.
17.
Antaki
,
J. F.
,
Ghattas
,
O.
,
Burgreen
,
G. W.
, and
He
,
B.
, 1995, “
Computational Flow Optimization of Rotary Blood Pump Components
,”
Artif. Organs
,
19
(
7
), pp.
608
615
.
18.
Wu
,
J.
,
Antaki
,
J. F.
,
Wagner
,
W. R.
,
Snyder
,
T. A.
,
Paden
,
B. E.
, and
Borovetz
,
H.S.
, 2005, “
Elimination of Adverse Leakage Flow in a Miniature Pediatric Centrifugal Blood Pump by Computational Fluid Dynamics-Based Design Optimization
,”
ASAIO J.
,
51
, pp.
636
643
.
19.
Wu
,
J.
,
Antaki
,
J. F.
,
Snyder
,
T. A.
,
Wagner
,
W. R.
,
Borovetz
,
H. S.
, and
Paden
,
B. E.
, 2005, “
Design Optimization of Blood Shearing Instrument by Computational Fluid Dynamics
,”
Artif. Organs
,
29
(
6
), pp.
482
489
.
20.
Antaki
,
J. F.
,
Ricci
,
M. R.
,
Verkaik
,
J. E.
,
Snyder
,
S. T.
,
Maul
,
T. M.
,
Kim
,
J.
,
Paden
,
D.,B.
,
Kameneva
,
M.,V.
,
Bradley
,
E.,P.
,
Wearden
,
P.,D.
, and
Borovetz
,
H. S.
, 2010, “
PediaFlow Maglev Ventricular Assist Device: A Prescriptive Design Approach
,”
Cardiovasc. Eng.Technol
,
1
(
1
), pp.
104
121
.
21.
Zhang
,
J.
,
Gellman
,
B.
,
Koert
,
A.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
,
Wu
,
Z. J.
, 2006, “
Computational and Experimental Evaluation of the CentriMag Blood Pump
,”
Artif. Organs
,
30
(
3
), pp.
168
177
.
22.
Zhang
,
J.
,
Taskin
,
M. E.
,
Koert
,
A.
,
Zhang
,
T.
,
Gellman
,
B.
,
Dasse
,
K. A.
,
Gilbert
,
R. J.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2006, “
Computational Design and In-Vitro Characterization of an Integrated Maglev Pump-Oxygenator
,”
Artif. Organs
,
33
(
10
), pp.
805
817
.
23.
Tuzun
,
E.
,
Harms
,
K.
,
Liu
,
D.
,
Dasse
,
K. A.
,
Conger
,
J. L.
,
Richardson
,
J. S.
,
Fleischli
,
A.
,
Frazier
,
O. H.
, and
Radovancevic
,
B.
, 2007, “
Preclinical Testing of the Levitronix Ultramag Pediatric Cardiac Assist Device in a Lamb Model
,”
ASAIO J.
,
53
(
3
), pp.
392
326
.
24.
Alemu
,
Y.
, and
Buestein
,
D.
, 2007, “
Flow-Induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve: Numerical Studies
,”
Artif. Organs
,
31
(
9
), pp.
677
688
.
25.
Hochareon
,
P.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
,
Tarbell
,
J. M.
, and
Deutsch
,
S.
, 2004, “
Correlation of In Vivo Clot Deposition With the Flow Characteristics in the 50 cc Penn State Artificial Heart: A Preliminary Study
,”
ASAIO J.
,
50
(
6
), pp.
537
542
.
26.
Vaslef
,
S. N.
,
Mockros
,
L. F.
,
Anderson
,
R. W.
, and
Leonard
,
R. J.
, 1994, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
,
40
, pp.
990
996
.
27.
Fluent User’s Guide, 2006, Ansys Fluent Inc., Lebanon, NH.
28.
Kim
,
S.
,
Cho
,
Y. I.
,
Hogenauer
,
W. N.
, and
Kensey
,
K. R.
, 2002, “
Method of Isolating Surface Tension and Yield Stress Effects in a U-Shaped Scanning Capillary-Tube Viscometer Using a Casson Model
,”
J. Non-Newtonian Fluid.
,
103
, pp.
205
219
.
29.
Bludszuweit
,
C.
, 1995, “
Three-Dimensional Numerical Prediction of Stress Loading of Blood Particles in a Centrifugal Pump
,”
Artif. Organs.
,
19
, pp.
590
596
.
30.
Taskin
,
M. E.
,
Fraser
,
K. H.
,
Zhang
,
T.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2010, “
Micro-Scale Modeling of Flow and Oxygen Transfer in Hollow-Fiber Membrane Bundle
,”
J. Membr. Sci.
,
362
, pp.
172
183
.
31.
Giersiepen
,
M.
,
Wurzinger
,
L. J.
,
Optiz
,
R.
, and
Reul
,
H.
, 1990, “
Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 23 Aortic Valves
,”
Int. J. Artif. Organs
,
13
, pp.
300
306
.
32.
Arvand
,
A.
,
Hormes
,
M.
, and
Real
,
H.
, 2005, “
A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump
,”
Artif. Organs
,
29
(
7
), pp.
531
540
.
33.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
, 2007, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds vs. Viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.
34.
Taskin
,
M. E.
,
Zhang
,
T.
,
Gellman
,
B.
,
Fleischli
,
A.
,
Dasse
,
K. A.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
, 2010, “
Computational Characterization of Flow and Hemolytic Performance of the UltraMag Blood Pump for Circulatory Support
,”
Artif. Organs
,
34
(
12
), pp.
1099
113
.
35.
Bluestein
,
D.
,
Yin
,
W.
,
Affeld
,
K.
, and
Jesty
,
J.
, 2004, “
Flow-Induced Platelet Activation in Mechanical Heart Valves
,”
J. Heart Valve Dis.
,
13
, pp.
501
508
.
36.
Krishnan
,
S.
,
Udaykumar
,
H. S.
,
Marshall
,
J. S.
, and
Chandran
,
K. B.
, 2006, “
Two-Dimensional Dynamic Simulation of Platelet Activation During Mechanical Heart Valve Closure
,”
Ann. Biomed. Eng.
,
34
(
10
), pp.
1519
1534
.
37.
Stepanoff
,
A. J.
, 1957,
Centrifugal and Axial Flow Pumps
,
Kreiger Publishing Company
,
Malibar, FL
, Chap. 7.
38.
Wu
,
Z. J.
,
Zhang
,
T.
,
Bianchi
,
G.
,
Wei
,
X.
,
Son
,
H. S.
,
Zhou
,
K.
,
Taskin
,
M. E.
,
Sanchez
,
P. G.
,
Garcia
,
J.
, and
Griffith
,
B. P.
, 2012, “
Thirty-Day In-Vivo Performance of a Wearable Artificial Pump-Lung for Ambulatory Respiratory Support
,”
Ann. Thorac. Surg.
,
93
(
1
), pp.
274
281
.
You do not currently have access to this content.