Graphical Abstract Figure

Saccular aneurysm with flow diverter deployed through microcatheter.

Graphical Abstract Figure

Saccular aneurysm with flow diverter deployed through microcatheter.

Close modal

Abstract

The treatment of Intracranial aneurysms has evolved substantially over the past two decades, transitioning from open skull surgery to less invasive endovascular techniques. The rapid advancement of various endovascular procedures is the main impetus driving this evolution. The flow-diverting devices are less invasive and cost-effective than endovascular approaches like clipping, platinum coiling, and stent-assisted coiling. Flow diverters are endovascular devices inserted into the brain artery to restrict blood flow to an aneurysm, promoting gradual thrombus formation within an aneurysm sac. While using the current generation flow diverters in treating diverse aneurysms appears to be efficient, each device is different in design, material composition, occlusion rate and deployment system. At times, it becomes challenging to determine the most appropriate device best suited for every patient because of these distinguished factors. To address this, the present review aims to provide a comprehensive overview of ten flow-diverting devices. It explains their design specifications, material compositions, six-month and one-year occlusion rates, and their respective advantages and limitations. By offering a detailed analysis of these devices, this review seeks to empower researchers and neurosurgeons alike. Researchers can stay abreast of the latest advancements in flow-diverting technology, while neurosurgeons can make informed decisions when selecting the most appropriate device for each patient’s specific needs.

References

1.
NINDS, 2024, “Cerebral Aneurysms,” National Institute of Neurological Disorders and Stroke, Bethesda, MD, accessed Nov. 6,
2024
, https://www.ninds.nih.gov/health-information/disorders/cerebral-aneurysms
2.
Deng
,
Z.
,
Xie
,
Z.
,
Liu
,
X.
,
Zeng
,
X.
, and
Li
,
Y.
,
2024
, “
Efficacy of Endovascular Embolisation Versus Microsurgical Clamping in the Treatment of Intracranial Aneurysms: A Meta-Analysis
,”
Am. J. Transl. Res.
,
16
(
5
), pp.
1845
1858
.10.62347/PCLZ5157
3.
Deshmukh
,
A. S.
,
Priola
,
S. M.
,
Katsanos
,
A. H.
,
Scalia
,
G.
,
Costa Alves
,
A.
,
Srivastava
,
A.
, and
Hawkes
,
C.
,
2024
, “
The Management of Intracranial Aneurysms: Current Trends and Future Directions
,”
Neurol. Int.
,
16
(
1
), pp.
74
94
.10.3390/neurolint16010005
4.
Rahmani
,
R.
,
Baranoski
,
J. F.
,
Albuquerque
,
F. C.
,
Lawton
,
M. T.
, and
Hashimoto
,
T.
,
2022
, “
Intracranial Aneurysm calcification—A Narrative Review
,”
Exp. Neurol.
,
353
, p.
114052
.10.1016/j.expneurol.2022.114052
5.
Caffes
,
N.
,
Wenger
,
N.
,
Cannarsa
,
G.
,
Oliver
,
J.
,
Onwukwe
,
C.
,
Gandhi
,
D.
, and
Simard
,
J. M.
,
2021
, “
Unruptured Cerebral Aneurysms in Elderly Patients: Key Challenges and Management
,”
Ann. Med.
,
53
(
1
), pp.
1839
1849
.10.1080/07853890.2021.1990393
6.
Sharma
,
D.
,
2020
, “
Perioperative Management of Aneurysmal Subarachnoid Hemorrhage: A Narrative Review
,”
Anesthesiology
,
133
(
6
), pp.
1283
1305
.10.1097/ALN.0000000000003558
7.
Pontes
,
F. G. B.
,
da Silva
,
E. M.
,
Baptista-Silva
,
J. C.
, and
Vasconcelos
,
V.
,
Cochrane Stroke Group,
2021
, “
Treatments for Unruptured Intracranial Aneurysms
,”
Cochrane Database Syst. Rev.
,
2021
(
5
), p.
CD013312
.10.1002/14651858.CD013312.pub2
8.
Belavadi
,
R.
,
Gudigopuram
,
S. V. R.
,
Raguthu
,
C. C.
,
Gajjela
,
H.
,
Kela
,
I.
,
Kakarala
,
C. L.
,
Hassan
,
M.
, and
Sange
,
I.
,
2021
, “
Surgical Clipping Versus Endovascular Coiling in the Management of Intracranial Aneurysms
,”
Cureus
,
13
(
12
), p.
e20478
.10.7759/cureus.20478
9.
Kühn
,
A. L.
,
Gounis
,
M. J.
, and
Puri
,
A. S.
,
2020
, “
Introduction: History and Development of Flow Diverter Technology and Evolution
,”
Neurosurgery
,
86
(
Suppl_1
), pp.
S3
S10
.10.1093/neuros/nyz307
10.
Hou
,
K.
,
Li
,
G.
,
Lv
,
X.
,
Xu
,
B.
,
Xu
,
K.
, and
Yu
,
J.
,
2020
, “
Delayed Rupture of Intracranial Aneurysms After Placement of Intra-Luminal Flow Diverter
,”
Neuroradiology J.
,
33
(
6
), pp.
451
464
.10.1177/1971400920953299
11.
Ravindran
,
K.
,
Casabella
,
A. M.
,
Cebral
,
J.
,
Brinjikji
,
W.
,
Kallmes
,
D. F.
, and
Kadirvel
,
R.
,
2020
, “
Mechanism of Action and Biology of Flow Diverters in the Treatment of Intracranial Aneurysms
,”
Neurosurgery
,
86
(
Suppl_1
), pp.
S13
S19
.10.1093/neuros/nyz324
12.
Fu
,
W.
, and
Xia
,
Q.
,
2017
, “
Interaction Between Flow Diverter and Parent Artery of Intracranial Aneurysm: A Computational Study
,”
Appl. Bionics Biomech.
,
2017
(
1
), pp.
1
9
.10.1155/2017/3751202
13.
Sree
,
A.
,
Hrishi
,
A. P.
,
Praveen
,
R.
, and
Sethuraman
,
M.
,
2024
, “
Periprocedural Management of Patients Presenting for Neuro-Interventional Procedures Using Flow Diverters for Complex Intracranial Aneurysms: An Anaesthetist’s perspective—A Narrative Review
,”
Brain Circ.
,
10
(
1
), pp.
21
27
.10.4103/bc.bc_77_23
14.
Kim
,
S.
,
Yang
,
H.
,
Oh
,
J. H.
, and
Kim
,
Y. B.
,
2024
, “
Quantitative Analysis of Hemodynamic Changes Induced by the Discrepancy Between the Flow Diverter and Parent Artery Sizes
,”
Sci. Rep.
,
14
(
1
), p.
10653
.10.1038/s41598-024-61312-y
15.
Yamada
,
K.
,
Imamura
,
H.
,
Ozaki
,
S.
,
Niwa
,
A.
,
Kushi
,
Y.
,
Yamada
,
N.
,
Ikedo
,
T.
,
Hamano
,
E.
,
Mori
,
H.
,
Iihara
,
K.
,
Yoshimura
,
S.
, and
Kataoka
,
H.
,
2024
, “
A Review of Current Flow Diverters
,”
J. Neuroendovascular Ther.
,
18
(
3
), pp.
59
64
.10.5797/jnet.ra.2023-0078
16.
Alderazi
,
Y. J.
,
Shastri
,
D.
,
Kass-Hout
,
T.
,
Prestigiacomo
,
C. J.
, and
Gandhi
,
C. D.
,
2014
, “
Flow Diverters for Intracranial Aneurysms
,”
Stroke Research Treatment
,
2014
, pp.
1
12
.10.1155/2014/415653
17.
Abdel-Tawab
,
M.
,
Abdeltawab
,
A. K.
,
Abdelmonem
,
M.
,
Moubark
,
M. A.
,
Taha
,
M. A.
,
Morsy
,
A.
,
Bessar
,
A. A.
, and
Ahmed Ebada
,
M.
,
2021
, “
Efficacy and Safety of Flow Diverters in Posterior Circulation Aneurysms and Comparison With Their Efficacy in Anterior Circulation Aneurysms: A Systematic Review and Meta-Analysis
,”
Interventional Neuroradiol.
,
27
(
5
), pp.
609
621
.10.1177/15910199211003017
18.
Dandapat
,
S.
,
Mendez-Ruiz
,
A.
,
Martínez-Galdámez
,
M.
,
Macho
,
J.
,
Derakhshani
,
S.
,
Foa Torres
,
G.
,
Pereira
,
V. M.
,
Arat
,
A.
, et al.,
2021
, “
Review of Current Intracranial Aneurysm Flow Diversion Technology and Clinical Use
,”
J. Neurointerv. Surg.
,
13
(
1
), pp.
54
62
.10.1136/neurintsurg-2020-015877
19.
Maragkos
,
G. A.
,
Dmytriw
,
A. A.
,
Salem
,
M. M.
,
Tutino
,
V. M.
,
Meng
,
H.
,
Cognard
,
C.
,
Machi
,
P.
, et al.,
2020
, “
Overview of Different Flow Diverters and Flow Dynamics
,”
Neurosurgery.
,
86
(
Suppl_1
), pp.
S21
S34
.10.1093/neuros/nyz323
20.
Nelson
,
P. K.
,
Lylyk
,
P.
,
Szikora
,
I.
,
Wetzel
,
S. G.
,
Wanke
,
I.
, and
Fiorella
,
D.
,
2011
, “
The Pipeline Embolisation Device for the Intracranial Treatment of Aneurysms Trial
,”
AJNR Am. J. Neuroradiol.
,
32
(
1
), pp.
34
40
.10.3174/ajnr.A2421
21.
Becske
,
T.
,
Potts
,
M. B.
,
Shapiro
,
M.
,
Kallmes
,
D. F.
,
Brinjikji
,
W.
,
Saatci
,
I.
,
McDougall
,
C. G.
, et al.,
2017
, “
Pipeline for Uncoilable or Failed Aneurysms: 3-Year Follow-Up Results
,”
J. Neurosurg.
,
127
(
1
), pp.
81
88
.10.3171/2015.6.JNS15311
22.
He
,
Y.
,
Sun
,
T.
,
Han
,
M.
, and
Wang
,
D.
,
2024
, “
Effect of the Pipeline Embolisation Device Placement on Branching Vessels in Anterior Circulation: A Systematic Review and Meta-Analysis
,”
Acta Neurochirurgica
,
166
(
1
), p.
2
.10.1007/s00701-024-05895-5
23.
Leung
,
G.
,
Tsang
,
A.
, and
Lui
,
W.
,
2012
, “
Pipeline Embolization Device for Intracranial Aneurysm: A Systematic Review
,”
Clin. Neuroradiol.
,
22
(
4
), pp.
295
303
.10.1007/s00062-012-0178-6
24.
Colby
,
G. P.
,
Lin
,
L.-M.
,
Caplan
,
J. M.
,
Jiang
,
B.
,
Huang
,
J.
,
Tamargo
,
R. J.
, and
Coon
,
A. L.
,
2016
, “
Immediate Procedural Outcomes in 44 Consecutive Pipeline Flex Cases: The First North American Single-Center Series
,”
J. Neurointerv. Surg.
,
8
(
7
), pp.
702
709
.10.1136/neurintsurg-2015-011894
25.
Hendricks
,
B. K.
,
Yoon
,
J. S.
,
Yaeger
,
K.
,
Kellner
,
C. P.
,
Mocco
,
J.
,
De Leacy
,
R. A.
,
Ducruet
,
A. F.
, et al.,
2020
, “
Wide-Neck Aneurysms: A Systematic Review of the Neurosurgical Literature Focusing on Definition and Clinical Implications
,”
J. Neurosurg.
,
133
(
1
), pp.
159
165
.10.3171/2019.3.JNS183160
26.
Li
,
L.
,
Gao
,
B. L.
,
Wu
,
Q. W.
,
Li
,
T. X.
,
Shao
,
Q. J.
, and
Chang
,
K. T.
,
2023
, “
Comparison of Pipeline Classic and Flex Embolisation Devices in Endovascular Performance for Intracranial Aneurysms
,”
Medicine
,
102
(
24
), p.
e34087
.10.1097/MD.0000000000034087
27.
Luo
,
C.
,
Jin
,
L.
,
Dong
,
J.
,
Fu
,
Z.
,
Liu
,
E.
,
Yin
,
S.
,
Jian
,
L.
, et al.,
2022
, “
Clinical Outcomes of Pipeline Embolisation Devices With Shield Technology for Treating Intracranial Aneurysms
,”
Front. Neurol.
,
13
, p.
971664
.10.3389/fneur.2022.971664
28.
Florez
,
W. A.
,
Garcia-Ballestas
,
E.
,
Quiñones-Ossa
,
G. A.
,
Janjua
,
T.
,
Konar
,
S.
,
Agrawal
,
A.
, and
Moscote-Salazar
,
L. R.
,
2021
, “
Silk® Flow Diverter Device for Intracranial Aneurysm Treatment: A Systematic Review and Meta-Analysis
,”
Neurointervention
,
16
(
3
), pp.
222
231
.10.5469/neuroint.2021.00234
29.
Murthy
,
S. B.
,
Shah
,
S.
,
Shastri
,
A.
,
Venkata Subba Rao
,
C. P.
,
Bershad
,
E. M.
, and
Suarez
,
J. I.
,
2014
, “
The SILK Flow Diverter in the Treatment of Intracranial Aneurysms
,”
J. Clin. Neurosci.
,
21
(
2
), pp.
203
206
.10.1016/j.jocn.2013.07.006
30.
Gabriel
,
F.
,
Marnat
,
G.
,
Barreau
,
X.
, Menegon, P., Bourcier, R., Pierot, L., Spelle, L., et. al.,
2021
, “
Safety and Efficacy of the Silk Flow Diverter: Insight From the Diversion Prospective Cohort Study
,”
J. Neuroradiol.
, 48(4), pp.
293
298
.10.1016/j.neurad.2020.06.006
31.
Pumar
,
J. M.
,
Mosqueira
,
A.
,
Olier
,
J.
,
Rodriguez-Fernandez
,
C.
,
Vega
,
P.
, and
Gonzalez-Diaz
,
E.
,
2021
, “
Treatment of Intracranial Aneurysms Using the New Silk Vista Flow Diverter: Safety Outcomes at Short-Term Follow-Up
,”
Front. Neurol.
,
12
, p.
713389
.10.3389/fneur.2021.713389
32.
De Vries
,
J.
,
Boogaarts
,
J.
,
Van Norden
,
A.
, and
Wakhloo
,
A. K.
,
2013
, “
New Generation of Flow Diverter (Surpass) for Unruptured Intracranial Aneurysms: A Prospective Single-Center Study in 37 Patients
,”
Stroke
,
44
(
6
), pp.
1567
1577
.10.1161/STROKEAHA.111.000434
33.
U.S. Food and Drug Administration,
2018
, “
Premarket Approval (PMA),”
U.S. Food and Drug Administration, Silver Spring, MD, accessed June 4, 2022, https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P170024
34.
Wakhloo
,
A. K.
,
Lylyk
,
P.
,
de Vries
,
J.
,
Taschner
,
C.
,
Lundquist
,
J.
,
Biondi
,
A.
,
Hartmann
,
M.
, et al
.
,
2015
, “
Surpass Flow Diverter in the Treatment of Intracranial Aneurysms: A Prospective Multicenter Study
,”
AJNR Am. J. Neuroradiol.
,
36
(
1
), pp.
98
107
.10.3174/ajnr.A4078
35.
Achey
,
R. L.
,
Winkelman
,
R.
,
Sheikhi
,
L.
,
Davison
,
M.
,
Toth
,
G.
,
Moore
,
N. Z.
, and
Bain
,
M.
,
2022
, “
Use of Surpass Streamline Flow Diverter for the Endovascular Treatment of Craniocervical Aneurysms: A Single-Institution Experience
,”
World Neurosurg.
,
162
, pp.
e281
e287
.10.1016/j.wneu.2022.03.008
36.
Teranishi
,
K.
,
Mishima
,
Y.
,
Taniguchi
,
T.
,
Fujii
,
T.
,
Nonaka
,
S.
,
Kitamura
,
T.
,
Kondo
,
A.
, and
Oishi
,
H.
,
2022
, “
Preliminary Experience of the Surpass Streamline Flow Diverter for Large and Giant Unruptured Internal Carotid Artery Aneurysms
,”
Neurol. Med.-Chir.
,
62
(
10
), pp.
451
457
.10.2176/jns-nmc.2022-0167
37.
National Library of Medicine,
2019
, “
Evaluation of Safety and Effectiveness of Stryker Surpass Evolve™ Flow Diverter System (EVOLVE)
,” National Library of Medicine, Bethesda, MD, accessed June 4, 2022, https://clinicaltrials.gov/ct2/show/NCT04195568
38.
Rodriguez-Calienes
,
A.
,
Vivanco-Suarez
,
J.
,
Castillo-Huerta
,
N. M.
,
Espinoza-Martinez
,
D.
,
Morán-Mariños
,
C.
,
Espiritu-Vilcapoma
,
X.
,
Rivera-Angles
,
V.
, and
Ortega-Gutierrez
,
S.
,
2024
, “
Performance Assessment of the Surpass Evolve Flow Diverter for Treating Intracranial Aneurysms: A Systematic Review and Meta-Analysis
,”
Interv. Neuroradiol.
, epub.10.1177/15910199241284412
39.
Issa
,
R.
,
Al-Homedi
,
Z.
,
Syed
,
D. H.
,
Aziz
,
W.
, and
Al-Omari
,
B.
,
2022
, “
Surpass Evolve Flow Diverter for the Treatment of Intracranial Aneurysm: A Systematic Review
,”
Brain Sciences
,
12
(
6
), p.
810
.10.3390/brainsci12060810
40.
Hellstern
,
V.
,
Aguilar Pérez
,
M.
,
Henkes
,
E.
,
Donauer
,
E.
,
Wendl
,
C.
,
Bäzner
,
H.
,
Ganslandt
,
O.
, and
Henkes
,
H.
,
2022
, “
Use of a p64 MW Flow Diverter With Hydrophilic Polymer Coating (HPC) and Prasugrel Single Antiplatelet Therapy for the Treatment of Unruptured Anterior Circulation Aneurysms: Safety Data and Short-Term Occlusion Rates
,”
Cardiovasc. Interventional Radiol.
,
45
(
9
), pp.
1364
1374
.10.1007/s00270-022-03153-8
41.
Aguilar-Perez
,
M.
,
Hellstern
,
V.
,
AlMatter
,
M.
, Wendl, C., Bäzner, H., Ganslandt, O., and Henkes, H.,
2020
, “
The p48 Flow Modulation Device With Hydrophilic Polymer Coating (HPC) for the Treatment of Acutely Ruptured Aneurysms: Early Clinical Experience Using Single Antiplatelet Therapy
,”
Cardiovasc. Interventional Radiol.
,
43
(
5
), pp.
740
748
.10.1007/s00270-020-02418-4
42.
Hellstern
,
V.
,
Brenner
,
N.
,
Cimpoca
,
A.
,
Albina Palmarola
,
P.
,
Henkes
,
E.
,
Wendl
,
C.
,
Bäzner
,
H.
, et al
.
,
2024
, “
Flow Diversion for Unruptured MCA Bifurcation Aneurysms: Comparison of p64 Classic, p64 MW HPC, and p48 MW HPC Flow Diverter Stents
,”
Front. Neurol.
,
15
, p.
1415861
.10.3389/fneur.2024.1415861
43.
Schob
,
S.
,
Kläver
,
M.
,
Richter
,
C.
,
Scherlach
,
C.
,
Maybaum
,
J.
,
Mucha
,
S.
,
Schüngel
,
M.-S.
, et al..,
2020
, “
Single-Center Experience With the Bare p48 MW Low-Profile Flow Diverter and Its Hydrophilically Covered Version for Treatment of Bifurcation Aneurysms in Distal Segments of the Anterior and Posterior Circulation
,”
Front. Neurol.
,
11
, p.
1050
.10.3389/fneur.2020.01050
44.
Lobsien
,
D.
,
Clajus
,
C.
,
Behme
,
D.
,
Ernst
,
M.
,
Riedel
,
C. H.
,
Abu-Fares
,
O.
,
Götz
,
F. G.
, et al.,
2021
, “
Aneurysm Treatment in Acute SAH With Hydrophilic-Coated Flow Diverters Under Single-Antiplatelet Therapy: A 3-Center Experience
,”
AJNR. Am. J. Neuroradiol.
,
42
(
3
), pp.
508
515
.10.3174/ajnr.A6942
45.
Burkhardt
,
J. K.
,
McGuire
,
L. S.
, and
Griessenauer
,
C. J.
,
2021
, “
Flared Non-Flow Diverting Ends of the FRED Flow Diverter for Cerebral Aneurysms Facilitate Device Anchoring at the Arterial Bifurcation
,”
Neuroradiol. J.
,
34
(
5
), pp.
521
524
.10.1177/19714009211013508
46.
Suh
,
D. C.
,
Song
,
Y.
,
Park
,
S. I.
, and
Kwon
,
B.
,
2023
, “
Flow Diverter Treatment Using a Flow Re-Direction Endoluminal Device for Unruptured Intracranial Vertebral Artery Dissecting Aneurysm: Single-Center Case Series and Technical Considerations
,”
Neurointervention
,
18
(
2
), pp.
114
122.
10.5469/neuroint.2023.00199
47.
Vollherbst
,
D. F.
,
Lücking
,
H.
,
DuPlessis
,
J.
,
Sonnberger
,
M.
,
Maurer
,
C.
,
Kocer
,
N.
,
Killer-Oberpfalzer
,
M.
, et al.,
2023
, “
The FRESH Study: Treatment of Intracranial Aneurysms With the New FRED X Flow Diverter With Antithrombotic Surface Treatment Technology-First Multicenter Experience in 161 Patients
,”
AJNR. Am. J. Neuroradiol.
,
44
(
4
), pp.
474
480
.10.3174/ajnr.A7834
48.
Sayin
,
B.
,
Şenol
,
Y. C.
,
Daglioglu
,
E.
,
Özbakır
,
M. O.
,
Orhan
,
G.
, and
Akmangit
,
İ.
,
2022
, “
Endovascular Treatment of Challenging Aneurysms With FRED Jr Flow Diverter Stents: A Single-Centre Experience
,”
Jpn. J. Radiol.
,
41
(
3
), pp.
322
334
.10.1007/s11604-022-01354-2
49.
Akgul
,
E.
,
Onan
,
H. B.
,
Akpinar
,
S.
,
Balli
,
H. T.
, and
Aksungur
,
E. H.
,
2016
, “
The Derivo Embolization Device in the Treatment of Intracranial Aneurysms: Short- and Midterm Results
,”
World Neurosurg.
,
95
, pp.
229
240
.10.1016/j.wneu.2016.07.101
50.
Zaeske
,
C.
,
Goertz
,
L.
,
Dorn
,
F.
, Turowski, B., Abdullayev, N., Schlamann, M., Liebig, T., and Kabbasch, C.,
2021
, “
Comparative Analysis of the Pipeline and the Derivo Flow Diverters for the Treatment of Unruptured Intracranial Aneurysms-A Multicentric Study
,”
World Neurosurg.
,
145
, pp.
326
331
.10.1016/j.wneu.2020.10.062
51.
Balci
,
S.
,
Çay
,
F.
,
Uysal
,
A.
, and
Arat
,
A.
,
2024
, “
Initial Experience With the NewDERIVO® Mini Embolisation Device for the Treatment of Intracranial Aneurysms
,”
Brain Sci.
,
14
(
9
), p.
911
.10.3390/brainsci14090911
52.
Balci
,
S.
,
Uysal
,
A.
, and
Arat
,
A.
,
2024
, “
P106 Evaluation of the Safety and Efficacy of the Derivo 2Heal® Flow Diverter Under Standard or Reduced-Dose Single Antiplatelet Therapy
,”
J. Neurointerv. Surg.
,
16
(
Suppl 2
), pp.
A92.2
A92
.10.1136/jnis-2024-ESMINT.142
53.
Nordmeyer
,
H.
,
Schwab
,
R.
, and Behme, D.,
2023
, “
P078/182 The Derivo 2 Heal Embolisation Device in the Treatment of Ruptured and Unruptured Intracranial Aneurysms: A Retrospective Multicenter Analysis
,”
J. NeuroInterv. Surg.
,
15
, p.
A47
.10.1136/jnis-2023-ESMINT.111
54.
Rueckel
,
J.
,
Ozpeynirci
,
Y.
,
Trumm
,
C.
,
Brem
,
C.
,
Pflaeging
,
M.
,
Fischer
,
T. D.
, and
Liebig
,
T.
,
2024
, “
Preliminary Results of Intracranial Aneurysm Treatment With derivo2heal Embolization Device
,”
Neuroradiology
,
66
(
10
), pp.
1747
1759
.10.1007/s00234-024-03387-y
55.
Wang
,
C.-B.
,
Shi
,
W.-W.
,
Zhang
,
G.-X.
,
Lu
,
H.-C.
, and
Ma
,
J.
,
2016
, “
Flow Diverter Treatment of Posterior Circulation Aneurysms. A Meta-Analysis
,”
Neuroradiology
,
58
(
4
), pp.
391
400
.10.1007/s00234-016-1649-2
56.
Sciacca
,
S.
,
Bassiouny
,
A.
,
Mansoor
,
N.
,
Minett
,
T.
,
Balasundaram
,
P.
,
Siddiqui
,
J.
,
Joshi
,
Y.
, et al.,
2023
, “
Early Outcomes of the Pipeline Vantage Flow Diverter
,”
Clin. Neuroradiol.
,
33
(
4
), pp.
887
896
.10.1007/s00062-023-01314-x
57.
Döring
,
K.
,
Aburub
,
A.
,
Krauss
,
J. K.
,
Lang
,
J. M.
,
Al-Afif
,
S.
,
Polemikos
,
M.
,
Weissenborn
,
K.
, et al.,
2023
, “
Early Clinical Experience With the New Generation Pipeline Vantage Flow Diverter in Treating Unruptured Saccular Aneurysms Using Short-Term Dual Antiplatelet Therapy
,”
Interv. Neuroradiol.
, epub.10.1177/15910199231205047
58.
Goertz
,
L.
,
Hohenstatt
,
S.
,
Zopfs
,
D.
,
Kottlors
,
J.
,
Pennig
,
L.
,
Schlamann
,
M.
,
Michael
,
A. E.
, et al.,
2024
, “
Pipeline Vantage Embolization Device for Treating Intracranial Aneurysms: A Systematic Review and Meta-Analysis
,”
Interv. Neuroradiol.
, epub.10.1177/15910199241264340
59.
Li
,
L.
,
Gao
,
B. L.
,
Wu
,
Q. W.
,
Shao
,
Q. J.
,
Wang
,
Z. L.
,
Zhang
,
K.
, and
Li
,
T. X.
,
2024
, “
Use of the Tubridge Flow Diverter in the Treatment of Intracranial Aneurysms: A Single Center Experience
,”
Sci. Rep.
,
14
(
1
), p.
7255
.10.1038/s41598-024-57840-2
60.
Pichardo
,
O.
,
Picazo
,
A.
,
Castillon
,
O.
,
Zuniga
,
J.
,
Jimenez
,
J.
, and
Alan
,
G.
,
2020
, “
The Pipeline Endovascular Device Versus the Flow Re-Direction Endoluminal Device for CerebralAneurysm. A One-Year Follow-Up in a Single-Center Experience
,”
Arch. Neurosurg.
,
1
(
1
), p.
7
.https://www.ansjournal.org/cgi/viewcontent.cgi?article=1008&context=home
61.
Trivelato
,
F. P.
,
Salles Rezende
,
M. T.
,
Ulhôa
,
A. C.
,
Henrique de Castro-Afonso
,
L.
,
Nakiri
,
G. S.
, and
Abud
,
D. G.
,
2018
, “
Occlusion Rates of Intracranial Aneurysms Treated With the Pipeline Embolization Device: The Role of Branches Arising From the Sac
,”
J. Neurosurg.
,
130
(
2
), pp.
1
7
.10.3171/2017.10.JNS172175
62.
Morton
,
R. P.
,
Kelly
,
C. M.
, and
Levitt
,
M. R.
,
2018
, “
Endovascular Treatment of Intracranial Aneurysms
,”
Principles of Neurological Surgery
,
Elsevier Inc
., Amsterdam, The Netherlands, pp.
355
365.e2
.
63.
Atasoy
,
D.
,
Kandasamy
,
N.
,
Hart
,
J.
,
Lynch
,
J.
,
Yang
,
S. H.
,
Walsh
,
D.
,
Tolias
,
C.
, and
Booth
,
T. C.
,
2019
, “
Outcome Study of the Pipeline Embolization Device With Shield Technology in Unruptured Aneurysms (PEDSU)
,”
AJNR. Am. J. Neuroradiol.
,
40
(
12
), pp.
2094
2101
.10.3174/ajnr.A6314
64.
Trivelato
,
F. P.
,
Wajnberg
,
E.
,
Rezende
,
M. T. S.
,
Ulhôa
,
A. C.
,
Piske
,
R. L.
,
Abud
,
T. G.
,
de Castro-Afonso
,
L. H.
, et al.,
2020
, “
Safety and Effectiveness of the Pipeline Flex Embolization Device With Shield Technology for the Treatment of Intracranial Aneurysms: Midterm Results From a Multicenter Study
,”
Neurosurguery
,
87
(
1
), pp.
104
111
.10.1093/neuros/nyz356
65.
Li
,
Y. L.
,
Roalfe
,
A.
,
Chu
,
E. Y.
,
Lee
,
R.
, and
Tsang
,
A. C. O.
,
2021
, “
Outcome of Flow Diverters With Surface Modifications in Treatment of Cerebral Aneurysms: Systematic Review and Meta-Analysis
,”
AJNR Am. J. Neuroradiol.
,
42
(
2
), pp.
327
333
.10.3174/ajnr.A6919
66.
Ma
,
L.
,
Hoz
,
S. S.
,
Al-Bayati
,
A. R.
,
Nogueira
,
R. G.
,
Lang
,
M. J.
, and
Gross
,
B. A.
,
2024
, “
Flow Diverters With Surface Modification in Patients With Intracranial Aneurysms: A Systematic Review and Meta-Analysis
,”
World Neurosurg.
,
185
, pp.
320
326.e17
.10.1016/j.wneu.2023.12.132
67.
Deng
,
Q.
,
Feng
,
W.
,
Hai
,
H.
, and
Liu
,
J.
,
2018
, “
Evaluation of the Safety and Efficacy of a Pipeline Flex Embolization Device for Treatment of Large, Wide-Necked Intracranial Aneurysms
,”
J. Interv. Med.
,
1
(
4
), pp.
229
233
.10.19779/j.cnki.2096-3602.2018.04.06
68.
Oğuz
,
Ş.
,
Tabakci
,
Ö. N.
,
Uysal
,
E.
,
Bulut
,
E.
, and
Dinç
,
H.
,
2019
, “
Pipeline Flex Embolization Device (PED Flex) for the Treatment of Intracranial Aneurysms: Periprocedural Outcomes and First-Year Angiographic Results
,”
Turk. J. Med. Sci.
,
49
(
6
), pp.
1640
1646
.10.3906/sag-1906-116
69.
Zhang
,
Q.
,
Shao
,
Q.
,
Chang
,
K.
,
Zhang
,
H.
,
He
,
Y.
,
Andrade-Barazarte
,
H.
, et al.,
2021
, “
Safety and Efficacy of Coils in Conjunction With the Pipeline Flex Embolization Device for the Treatment of Cerebral Aneurysms
,”
Front. Neurol.
,
12
, p.
651465
.10.3389/fneur.2021.651465
70.
Berge
,
J.
,
Biondi
,
A.
,
Machi
,
P.
,
Brunel
,
H.
,
Pierot
,
L.
,
Gabrillargues
,
J.
,
Kadziolka
,
K.
, et al.,
2012
, “
Flow-Diverter Silk Stent for the Treatment of Intracranial Aneurysms: 1-Year Follow-Up in a Multicenter Study
,”
AJNR. Am. J. Neuroradiol.
,
33
(
6
), pp.
1150
1155
.10.3174/ajnr.A2907
71.
Meyers
,
P. M.
,
Coon
,
A. L.
,
Kan
,
P. T.
,
Wakhloo
,
A. K.
, and
Hanel
,
R. A.
,
2019
, “
SCENT Trial
,”
Stroke
,
50
(
6
), pp.
1473
1479
.10.1161/STROKEAHA.118.024135
72.
Taschner
,
C. A.
,
Vedantham
,
S.
,
de Vries
,
J.
,
Biondi
,
A.
,
Boogaarts
,
J.
,
Sakai
,
N.
,
Lylyk
,
P.
, et al.,
2017
, “
Surpass Flow Diverter for Treatment of Posterior Circulation Aneurysms
,”
AJNR. Am. J. Neuroradiol.
,
38
(
3
), pp.
582
589
.10.3174/ajnr.A5029
73.
Rautio
,
R.
,
Alpay
,
K.
,
Sinisalo
,
M.
, and
Numminen
,
J.
,
2022
, “
Treatment of Intracranial Aneurysms Using the New Surpass Evolve Flow Diverter: Safety Outcomes and Six-Month Imaging Follow-Up
,”
J. Neuroradiol.
,
49
(
1
), pp.
80
86
.10.1016/j.neurad.2021.03.003
74.
Maus
,
V.
,
Weber
,
W.
,
Berlis
,
A.
,
Maurer
,
C.
, and
Fischer
,
S.
,
2021
, “
Initial Experience With Surpass Evolve Flow Diverter in the Treatment of Intracranial Aneurysms
,”
Clin. Neuroradiol.
,
31
(
3
), pp.
681
689
.10.1007/s00062-020-00972-5
75.
Sirakov
,
S.
,
Sirakov
,
A.
,
Bhogal
,
P.
,
Penkov
,
M.
,
Minkin
,
K.
,
Ninov
,
K.
,
Hristov
,
H.
, et al.,
2020
, “
The p64 Flow Diverter-Mid-Term and Long-Term Results From a Single Center
,”
Clin. Neuroradiol.
,
30
(
3
), pp.
471
480
.10.1007/s00062-019-00823-y
76.
De Beule
,
T.
,
Boulanger
,
T.
,
Heye
,
S.
,
van Rooij
,
W. J.
,
van Zwam
,
W. H.
, and
Stockx
,
L.
,
2021
, “
p64 Flow Diverter: Results in 108 Patients From a Single Center
,”
Interventional Neuroradiol.
,
27
(
1
), pp.
51
59
.10.1177/1591019920932048
77.
Bonafe
,
A.
,
Perez
,
M. A.
,
Henkes
,
H.
,
Lylyk
,
P.
,
Bleise
,
C.
,
Gascou
,
G.
,
Sirakov
,
S.
, et al.,
2022
, “
Diversion-p64: Results From an International, Prospective, Multicenter, Single-Arm Post-Market Study to Assess the Safety and Effectiveness of the p64 Flow Modulation Device
,”
J. Neurointerv. Surg.
,
14
(
9
), pp.
898
903
.10.1136/neurintsurg-2021-017809
78.
Möhlenbruch
,
M. A.
,
Herweh
,
C.
,
Jestaedt
,
L.
,
Stampfl
,
S.
,
Schönenberger
,
S.
,
Ringleb
,
P. A.
,
Bendszus
,
M.
, and
Pham
,
M.
,
2015
, “
The FRED Flow-Diverter Stent for Intracranial Aneurysms: Clinical Study to Assess Safety and Efficacy
,”
AJNR. Am. J. Neuroradiol.
,
36
(
6
), pp.
1155
1161
.10.3174/ajnr.A4251
79.
Guimaraens
,
L.
,
Vivas
,
E.
,
Saldaña
,
J.
,
Llibre
,
J. C.
,
Gil
,
A.
,
Balaguer
,
E.
,
Rodríguez-Campello
,
A.
, et al.,
2020
, “
Efficacy and Safety of the Dual-Layer Flow-Diverting Stent (FRED) for the Treatment of Intracranial Aneurysms
,”
J. Neurointerv. Surg.
,
12
(
5
), pp.
521
525
.10.1136/neurintsurg-2019-015371
80.
Trivelato
,
F. P.
,
Abud
,
D. G.
,
Ulhôa
,
A. C.
,
Waihrich
,
E. S.
,
Abud
,
T. G.
,
Castro Afonso
,
L. H.
, et al.,
2019
, “
Derivo Embolization Device for the Treatment of Intracranial Aneurysms
,”
Stroke
,
50
(
9
), pp.
2351
2358
.10.1161/STROKEAHA.119.025407
81.
Jing
,
L.
,
Zhong
,
J.
,
Liu
,
J.
,
Yang
,
X.
,
Paliwal
,
N.
,
Meng
,
H.
,
Wang
,
S.
, and
Zhang
,
Y.
,
2016
, “
Hemodynamic Effect of Flow Diverter and Coils in Treatment of Large and Giant Intracranial Aneurysms
,”
World Neurosurg.
,
89
, pp.
199
207
.10.1016/j.wneu.2016.01.079
82.
Yuan
,
D.
,
Zhenmei
,
N.
,
Guo
,
Y.
,
Cao
,
F.
,
Liu
,
J.
,
Jiang
,
W.
,
Li
,
Y.
, and
Yan
,
J.
,
2024
, “
Treatment of Intracranial Aneurysms Using the Tubridge Flow Diverter
,”
Postgrad. Med. J.
, p.
qgae109
.10.1093/postmj/qgae109
83.
Vollherbst
,
D. F.
,
Cekirge
,
H. S.
,
Saatci
,
I.
,
Baltacioglu
,
F.
,
Onal
,
B.
,
Koc
,
O.
,
Rautio
,
R.
, et al.,
2023
, “
First Clinical Multicenter Experience With the New Pipeline Vantage Flow Diverter
,”
J. Neurointerv. Surg.
,
15
(
1
), pp.
63
69
.10.1136/neurintsurg-2021-018480
84.
De Villiers
,
L.
,
Carraro do Nascimento
,
V.
,
Domitrovic
,
L.
,
Dhillon
,
P. S.
, and
Rice
,
H.
,
2024
, “
Vanguard Study: Initial Experience With the New Fourth Generation Pipeline Vantage Flow Diverter (PVFD): 6-Month Results, Technical and Clinical Considerations
,”
J. Neurointerv. Surg.
,
17
(
e1
), pp.
e166
e171
.10.1136/jnis-2023-021182
85.
Skinner
,
N.
,
Galea
,
J.
,
Van Beijnum
,
J.
, Mattar, G., and Sastry, A.,
2022
, “
P18 Acute Flow Diversion With Pipeline Flex and Pipeline Vantage With Shield Technology With Single Antiplatelet Cover – Short Term Results
,”
J. NeuroInterv. Surg.
,
14
, p.
A16
.10.1136/neurintsurg-2022-ESMINT.40
You do not currently have access to this content.