Abstract

During mechanical ventilation, lung function and gas exchange in structurally heterogeneous lungs may be improved when volume oscillations at the airway opening are applied at multiple frequencies simultaneously, a technique referred to as multifrequency oscillatory ventilation (MFOV). This is in contrast to conventional high-frequency oscillatory ventilation (HFOV), for which oscillatory volumes are applied at a single frequency. In the present study, as a means of fully realizing the potential of MFOV, we designed and tested a computer-controlled hybrid oscillatory ventilator capable of generating the flows, tidal volumes, and airway pressures required for MFOV, HFOV, conventional mechanical ventilation (CMV), as well as oscillometric measurements of respiratory impedance. The device employs an iterative spectral feedback controller to generate a wide range of oscillatory waveforms. The performance of the device meets that of commercial mechanical ventilators in volume-controlled mode. Oscillatory modes of ventilation also meet design specifications in a mechanical test lung, over frequencies from 4 to 20 Hz and mean airway pressure from 5 to 30 cmH2O. In proof-of-concept experiments, the oscillatory ventilator maintained adequate gas exchange in a porcine model of acute lung injury, using combinations of conventional and oscillatory ventilation modalities. In summary, our novel device is capable of generating a wide range of conventional and oscillatory ventilation waveforms with potential to enhance gas exchange, while simultaneously providing less injurious ventilation.

References

1.
Slutsky
,
A. S.
, and
Ranieri
,
V. M.
,
2013
, “
Ventilator-Induced Lung Injury
,”
N. Engl. J. Med.
,
369
(
22
), pp.
2126
2136
.10.1056/NEJMra1208707
2.
Fredberg
,
J. J.
,
Keefe
,
D. H.
,
Glass
,
G. M.
,
Castile
,
R. G.
, and
Frantz
,
I. D.
, 3rd.
,
1984
, “
Alveolar Pressure Nonhomogeneity During Small-Amplitude High-Frequency Oscillation
,”
J. Appl. Physiol.
,
57
(
3
), pp.
788
800
.10.1152/jappl.1984.57.3.788
3.
Allen
,
J. L.
,
Fredberg
,
J. J.
,
Keefe
,
D. H.
, and
Frantz
,
I. D.
, 3rd.
,
1985
, “
Alveolar Pressure Magnitude and Asynchrony During High-Frequency Oscillations of Excised Rabbit Lungs
,”
Am. Rev. Respir. Dis.
,
132
(
2
), pp.
343
349
.10.1164/arrd.1985.132.2.343
4.
Allen
,
J. L.
,
Frantz
,
I. D.
, 3rd.
, and
Fredberg
,
J. J.
,
1987
, “
Heterogeneity of Mean Alveolar Pressure During High-Frequency Oscillations
,”
J. Appl. Physiol.
,
62
(
1
), pp.
223
228
.10.1152/jappl.1987.62.1.223
5.
Colletti
,
A. A.
,
Amini
,
R.
, and
Kaczka
,
D. W.
,
2011
, “
Simulating Ventilation Distribution in Heterogenous Lung Injury Using a Binary Tree Data Structure
,”
Comput. Biol. Med.
,
41
(
10
), pp.
936
945
.10.1016/j.compbiomed.2011.08.004
6.
Amini
,
R.
, and
Kaczka
,
D. W.
,
2013
, “
Impact of Ventilation Frequency and Parenchymal Stiffness on Flow and Pressure Distribution in a Canine Lung Model
,”
Ann. Biomed. Eng.
,
41
(
12
), pp.
2699
2711
.10.1007/s10439-013-0866-7
7.
Courtney
,
S. E.
,
van Kaam
,
A. H.
, and
Pillow
,
J. J.
,
2024
, “
Neonatal High Frequency Ventilation: Current Trends and Future Directions
,”
Semin. Perinatol.
,
48
(
2
), p.
151887
.10.1016/j.semperi.2024.151887
8.
Forster
,
K. M.
,
Roth
,
C. J.
,
Hilgendorff
,
A.
,
Ertl-Wagner
,
B.
,
Flemmer
,
A. W.
, and
Wall
,
W. A.
,
2021
, “
In Silico Numerical Simulation of Ventilator Settings During High-Frequency Ventilation in Preterm Infants
,”
Pediatr. Pulmonol.
,
56
(
12
), pp.
3839
3846
.10.1002/ppul.25626
9.
Kaczka
,
D. W.
,
2021
, “
Oscillatory Ventilation Redux: Alternative Perspectives on Ventilator-Induced Lung Injury in the Acute Respiratory Distress Syndrome
,”
Curr. Opin. Physiol.
,
21
, pp.
36
43
.10.1016/j.cophys.2021.03.006
10.
Miller
,
A. G.
,
Tan
,
H. L.
,
Smith
,
B. J.
,
Rotta
,
A. T.
, and
Lee
,
J. H.
,
2022
, “
The Physiological Basis of High-Frequency Oscillatory Ventilation and Current Evidence in Adults and Children: A Narrative Review
,”
Front. Physiol.
,
13
, p.
813478
.10.3389/fphys.2022.813478
11.
Ferguson
,
N. D.
,
Cook
,
D. J.
,
Guyatt
,
G. H.
,
Mehta
,
S.
,
Hand
,
L.
,
Austin
,
P.
,
Zhou
,
Q.
, et al.,
2013
, “
High-Frequency Oscillation in Early Acute Respiratory Distress Syndrome
,”
N. Engl. J. Med.
,
368
(
9
), pp.
795
805
.10.1056/NEJMoa1215554
12.
Young
,
D.
,
Lamb
,
S. E.
,
Shah
,
S.
,
MacKenzie
,
I.
,
Tunnicliffe
,
W.
,
Lall
,
R.
,
Rowan
,
K.
,
Cuthbertson
,
B. H.
, and
Group
,
O. S.
,
2013
, “
High-Frequency Oscillation for Acute Respiratory Distress Syndrome
,”
N. Engl. J. Med.
,
368
(
9
), pp.
806
813
.10.1056/NEJMoa1215716
13.
Greenblatt
,
E. E.
,
Butler
,
J. P.
,
Venegas
,
J. G.
, and
Winkler
,
T.
,
2014
, “
Pendelluft in the Bronchial Tree
,”
J. Appl. Physiol.
,
117
(
9
), pp.
979
988
.10.1152/japplphysiol.00466.2014
14.
Herrmann
,
J.
,
Tawhai
,
M. H.
, and
Kaczka
,
D. W.
,
2018
, “
Parenchymal Strain Heterogeneity During Oscillatory Ventilation: Why Two Frequencies Are Better Than One
,”
J. Appl. Physiol.
,
124
(
3
), pp.
653
663
.10.1152/japplphysiol.00615.2017
15.
Herrmann
,
J.
,
Tawhai
,
M. H.
, and
Kaczka
,
D. W.
,
2019
, “
Strain, Strain Rate, and Mechanical Power: An Optimization Comparison for Oscillatory Ventilation
,”
Int. J. Numer. Method Biomed. Eng.
,
35
(
10
), p.
e3238
.10.1002/cnm.3238
16.
Kaczka
,
D. W.
,
Herrmann
,
J.
,
Zonneveld
,
C. E.
,
Tingay
,
D. G.
,
Lavizzari
,
A.
,
Noble
,
P. B.
, and
Pillow
,
J. J.
,
2015
, “
Multifrequency Oscillatory Ventilation in the Premature Lung: Effects on Gas Exchange, Mechanics, and Ventilation Distribution
,”
Anesthesiology
,
123
(
6
), pp.
1394
1403
.10.1097/ALN.0000000000000898
17.
Herrmann
,
J.
,
Gerard
,
S. E.
,
Shao
,
W.
,
Hawley
,
M. L.
,
Reinhardt
,
J. M.
,
Christensen
,
G. E.
,
Hoffman
,
E. A.
, and
Kaczka
,
D. W.
,
2020
, “
Quantifying Regional Lung Deformation Using Four-Dimensional Computed Tomography: A Comparison of Conventional and Oscillatory Ventilation
,”
Front. Physiol.
,
11
, p.
14
.10.3389/fphys.2020.00014
18.
Herrmann
,
J.
,
Gerard
,
S. E.
,
Reinhardt
,
J. M.
,
Hoffman
,
E. A.
, and
Kaczka
,
D. W.
,
2021
, “
Regional Gas Transport During Conventional and Oscillatory Ventilation Assessed by Xenon-Enhanced Computed Tomography
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2377
2388
.10.1007/s10439-021-02767-2
19.
Pillow
,
J. J.
,
Wilkinson
,
M. H.
,
Neil
,
H. L.
, and
Ramsden
,
C. A.
,
2001
, “
In Vitro Performance Characteristics of High-Frequency Oscillatory Ventilators
,”
Am. J. Respir. Crit. Care Med.
,
164
(
6
), pp.
1019
1024
.10.1164/ajrccm.164.6.2005008
20.
Harcourt
,
E. R.
,
John
,
J.
,
Dargaville
,
P. A.
,
Zannin
,
E.
,
Davis
,
P. G.
, and
Tingay
,
D. G.
,
2014
, “
Pressure and Flow Waveform Characteristics of Eight High-Frequency Oscillators
,”
Pediatr. Crit. Care Med.
,
15
(
5
), pp.
e234
e240
.10.1097/PCC.0000000000000111
21.
Tingay
,
D. G.
,
John
,
J.
,
Harcourt
,
E. R.
,
Black
,
D.
,
Dargaville
,
P. A.
,
Mills
,
J. F.
, and
Davis
,
P. G.
,
2015
, “
Are All Oscillators Created Equal? In Vitro Performance Characteristics of Eight High-Frequency Oscillatory Ventilators
,”
Neonatology
,
108
(
3
), pp.
220
228
.10.1159/000431216
22.
Kaczka
,
D. W.
, and
Dellaca
,
R. L.
,
2011
, “
Oscillation Mechanics of the Respiratory System: Applications to Lung Disease
,”
Crit. Rev. Biomed. Eng.
,
39
(
4
), pp.
337
359
.10.1615/CritRevBiomedEng.v39.i4.60
23.
Simon
,
B. A.
, and
Mitzner
,
W.
,
1991
, “
Design and Calibration of a High-Frequency Oscillatory Ventilator
,”
IEEE Trans. Biomed. Eng.
,
38
(
2
), pp.
214
218
.10.1109/10.76389
24.
Hajdarevic
,
B.
,
2018
, “
Closed-Loop Control of Multi-Frequency Oscillatory Ventilation Waveforms Using Iterative Spectral Adjustment
,”
Master thesis
,
University of Iowa
,
Iowa City, IA
.https://www.proquest.com/openview/899c2de26752dc40e39cc905de159fbb/1?pqorigsite=gscholar&cbl=18750&diss=y
25.
Harris
,
F. J.
,
1978
, “
On the Use of Windows for Harmonic Analysis With the Discrete Fourier Transform
,”
Proc. IEEE
,
66
(
1
), pp.
51
83
.10.1109/PROC.1978.10837
26.
Ziegler
,
J. G.
, and
Nichols
,
N. B.
,
1942
, “
Optimum Settings for Automatic Controllers
,”
Trans. ASME
,
64
(
8
), pp.
759
765
.10.1115/1.2899060
27.
Jackson
,
A. C.
, and
Vinegar
,
A.
,
1979
, “
A Technique for Measuring Frequency Response of Pressure, Volume, and Flow Transducers
,”
J. Appl. Physiol.
,
47
(
2
), pp.
462
467
.10.1152/jappl.1979.47.2.462
28.
Renzi
,
P. E.
,
Giurdanella
,
C. A.
, and
Jackson
,
A. C.
,
1990
, “
Improved Frequency Response of Pneumotachometers by Digital Compensation
,”
J. Appl. Physiol.
,
68
(
1
), pp.
382
386
.10.1152/jappl.1990.68.1.382
29.
Xu
,
X. K.
,
Harvey
,
B. P.
,
Lutchen
,
K. R.
,
Gelbman
,
B. D.
,
Monfre
,
S. L.
,
Coifman
,
R. E.
, and
Forbes
,
C. E.
,
2018
, “
Comparison of a Micro-Electro-Mechanical System Airflow Sensor With the Pneumotach in the Forced Oscillation Technique
,”
Med. Devices: Evidence Res.
,
11
, pp.
419
426
.10.2147/MDER.S181258
30.
Hager
,
D. N.
,
Fessler
,
H. E.
,
Kaczka
,
D. W.
,
Shanholtz
,
C. B.
,
Fuld
,
M. K.
,
Simon
,
B. A.
, and
Brower
,
R. G.
,
2007
, “
Tidal Volume Delivery During High-Frequency Oscillatory Ventilation in Adults With Acute Respiratory Distress Syndrome
,”
Crit. Care Med.
,
35
(
6
), pp.
1522
1529
.10.1097/01.CCM.0000266586.04676.55
31.
Harf
,
A.
,
Le Gall
,
R.
, and
Chang
,
H. K.
,
1983
, “
Mechanical Ventilation With Superimposed High Frequency Oscillation in the Normal Rat
,”
Respir. Physiol.
,
54
(
1
), pp.
31
40
.10.1016/0034-5687(83)90111-1
32.
Suki
,
B.
, and
Lutchen
,
K. R.
,
1992
, “
Pseudorandom Signals to Estimate Apparent Transfer and Coherence Functions of Nonlinear Systems: Applications to Respiratory Mechanics
,”
IEEE Trans. Biomed. Eng.
,
39
(
11
), pp.
1142
1151
.10.1109/10.168693
33.
Welch
,
P. D.
,
1967
, “
The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodograms
,”
IEEE Trans. Audio Electroacoust.
,
15
(
2
), pp.
70
73
.10.1109/TAU.1967.1161901
34.
Cruz
,
A. F.
,
Herrmann
,
J.
,
Carvalho
,
C. R. R.
, and
Kaczka
,
D. W.
,
2022
, “
A Comparison of Endotracheal Tube Compensation Techniques for the Measurement of Respiratory Mechanical Impedance at Low Frequencies
,”
J. Clin. Monit. Comput.
,
36
(
5
), pp.
1461
1477
.10.1007/s10877-021-00788-9
35.
Kaczka
,
D. W.
,
Hager
,
D. N.
,
Hawley
,
M. L.
, and
Simon
,
B. A.
,
2005
, “
Quantifying Mechanical Heterogeneity in Canine Acute Lung Injury: Impact of Mean Airway Pressure
,”
Anesthesiology
,
103
(
2
), pp.
306
312
.10.1097/00000542-200508000-00014
36.
Pillow
,
J. J.
,
Sly
,
P. D.
,
Hantos
,
Z.
, and
Bates
,
J. H.
,
2002
, “
Dependence of Intrapulmonary Pressure Amplitudes on Respiratory Mechanics During High-Frequency Oscillatory Ventilation in Preterm Lambs
,”
Pediatr. Res.
,
52
(
4
), pp.
538
544
.10.1203/00006450-200210000-00013
37.
Ranieri
,
V. M.
,
Zhang
,
H.
,
Mascia
,
L.
,
Aubin
,
M.
,
Lin
,
C. Y.
,
Mullen
,
J. B.
,
Grasso
,
S.
, et al.,
2000
, “
Pressure-Time Curve Predicts Minimally Injurious Ventilatory Strategy in an Isolated Rat Lung Model
,”
Anesthesiology
,
93
(
5
), pp.
1320
1328
.10.1097/00000542-200011000-00027
38.
Edlinger-Stanger
,
M.
,
Fritz
,
C.
,
McGregor
,
H. C.
,
Bustin
,
S. L.
,
Ayoubi
,
N.
,
Bath
,
H. K.
,
Müller
,
J.
, et al.,
2023
, “
Non-Invasive Monitoring of Pulmonary Blood Flow, Functional Residual Capacity, and Shunt Index in a Porcine Model
,”
Transl. Med. Commun.
,
8
(
1
), p.
13
.10.1186/s41231-023-00146-8
39.
Satoh
,
D.
,
Kurosawa
,
S.
,
Kirino
,
W.
,
Wagatsuma
,
T.
,
Ejima
,
Y.
,
Yoshida
,
A.
,
Toyama
,
H.
, and
Nagaya
,
K.
,
2012
, “
Impact of Changes of Positive End-Expiratory Pressure on Functional Residual Capacity at Low Tidal Volume Ventilation During General Anesthesia
,”
J. Anesth.
,
26
(
5
), pp.
664
669
.10.1007/s00540-012-1411-9
40.
International Organization for Standardization
,
2020
, “
Medical Electrical Equipment - Part 2-12: Particular Requirements for Basic Safety and Essential Performance of Critical Care Ventilators
,”
International Organization for Standardization
,
Geneva
, Switzerland, p.
138
.
41.
International Organization for Standardization
,
2021
, “
Medical Electrical Equipment - Part 2-87: Particular Requirements for Basic Safety and Essential Performance of High-Frequency Ventilators
,”
International Organization for Standardization
,
Geneva
, Switzerland, p.
136
.
42.
Kaczka
,
D. W.
, and
Lutchen
,
K. R.
,
2004
, “
Servo-Controlled Pneumatic Pressure Oscillator for Respiratory Impedance Measurements and High-Frequency Ventilation
,”
Ann. Biomed. Eng.
,
32
(
4
), pp.
596
608
.10.1023/B:ABME.0000019179.87974.7d
43.
Hager
,
D. N.
,
Fuld
,
M.
,
Kaczka
,
D. W.
,
Fessler
,
H. E.
,
Brower
,
R. G.
, and
Simon
,
B. A.
,
2006
, “
Four Methods of Measuring Tidal Volume During High-Frequency Oscillatory Ventilation
,”
Crit. Care Med.
,
34
(
3
), pp.
751
757
.10.1097/01.CCM.0000201400.63304.41
44.
Kaczka
,
D. W.
,
Ingenito
,
E. P.
,
Suki
,
B.
, and
Lutchen
,
K. R.
,
1997
, “
Partitioning Airway and Lung Tissue Resistances in Humans: Effects of Bronchoconstriction
,”
J. Appl. Physiol.
,
82
(
5
), pp.
1531
1541
.10.1152/jappl.1997.82.5.1531
45.
Peták
,
F.
,
Fodor
,
G. H.
,
Schranc
,
Á.
,
Südy
,
R.
,
Balogh
,
Á. L.
,
Babik
,
B.
,
Dos Santos Rocha
,
A.
, et al.,
2022
, “
Expiratory High-Frequency Percussive Ventilation: A Novel Concept for Improving Gas Exchange
,”
Respir. Res.
,
23
(
1
), p.
283
.10.1186/s12931-022-02215-2
46.
Kaczka
,
D. W.
,
Ingenito
,
E. P.
, and
Lutchen
,
K. R.
,
1999
, “
Technique to Determine Inspiratory Impedance During Mechanical Ventilation: Implications for Flow Limited Patients
,”
Ann. Biomed. Eng.
,
27
(
3
), pp.
340
355
.10.1114/1.146
47.
Navajas
,
D.
, and
Farre
,
R.
,
2001
, “
Forced Oscillation Assessment of Respiratory Mechanics in Ventilated Patients
,”
Crit. Care
,
5
(
1
), pp.
3
9
.10.1186/cc972
48.
Navajas
,
D.
,
Farre
,
R.
,
Canet
,
J.
,
Rotger
,
M.
, and
Sanchis
,
J.
,
1990
, “
Respiratory Input Impedance in Anesthetized Paralyzed Patients
,”
J. Appl. Physiol.
,
69
(
4
), pp.
1372
1379
.10.1152/jappl.1990.69.4.1372
49.
Peslin
,
R.
,
Felicio da Silva
,
J.
,
Duvivier
,
C.
, and
Chabot
,
F.
,
1993
, “
Respiratory Mechanics Studied by Forced Oscillations During Artificial Ventilation
,”
Eur. Respir. J.
,
6
(
6
), pp.
772
784
.10.1183/09031936.93.06060772
50.
Michaelson
,
E. D.
,
Grassman
,
E. D.
, and
Peters
,
W. R.
,
1975
, “
Pulmonary Mechanics by Spectral Analysis of Forced Random Noise
,”
J. Clin. Invest.
,
56
(
5
), pp.
1210
1230
.10.1172/JCI108198
51.
Jackson
,
A. C.
, and
Lutchen
,
K. R.
,
1991
, “
Physiological Basis for Resonant Frequencies in Respiratory System Impedances in Dogs
,”
J. Appl. Physiol.
,
70
(
3
), pp.
1051
1058
.10.1152/jappl.1991.70.3.1051
52.
Wallin
,
M.
, and
Hedenstierna
,
G.
,
2020
, “
Tidal Volumes: Cold and Dry or Warm and Humid, Does It Matter?
,”
J. Clin. Monit. Comput.
,
34
(
5
), pp.
871
873
.10.1007/s10877-019-00416-7
53.
Zandstra
,
D. F.
,
Stoutenbeek
,
C. P.
, and
Miranda
,
D. R.
,
1987
, “
Efficacy of a Heat and Moisture Exchange Device During High-Frequency Jet Ventilation
,”
Intensive Care Med.
,
13
(
5
), pp.
355
357
.10.1007/BF00255794
You do not currently have access to this content.