Abstract

This paper presents the design, analysis, and development of a novel six degrees-of-freedom (6DOF) desktop upper limb rehabilitation robot. The upper limb rehabilitation robot is mainly composed of the omnidirectional mobile platform, armrest, and 3DOF wrist rehabilitation mechanism. The forward and inverse kinematics and Jacobian matrix of the upper limb rehabilitation robot are derived based on the kinematics of a rigid body, and its working space is also analyzed based on arm kinematics. The forward and inverse kinematics of the arm are derived based on the D–H method. A new control strategy and algorithm were developed based on the robot system's hardware structure and arm model. These were employed in simulated rehabilitation experiments on both a single joint and multiple joint linkages. The experimental results indicate that the maximum error for single-joint rehabilitation is 6.123 deg, while for multiple joint linkages, it is 5.323 deg. Therefore, the control strategy and control algorithm can complete the corresponding rehabilitation training. This 6DOF desktop upper limb rehabilitation robot can provide passive rehabilitation training for patients in the early stages of paralysis.

References

1.
GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators,
2019
, “
Global, Regional, and National Burden of Traumatic Brain Injury and Spinal Cord Injury, 1990–2016: A Systematic Analysis for the Global Burden of Disease Study 2016
,”
Lancet Neurol.
,
18
(
1
), pp.
56
87
.10.1016/S1474-4422(18)30415-0
2.
Warner
,
J. J.
,
Harrington
,
R. A.
,
Sacco
,
R. L.
, and
Elkind
,
M. S. V.
,
2019
, “
Guidelines for the Early Management of Patients With Acute Ischemic Stroke: 2019 Update to the 2018 Guidelines for the Early Management of Acute Ischemic Stroke
,”
Stroke
,
50
(
12
), pp.
3331
3332
.10.1161/STROKEAHA.119.027708
3.
Pohl
,
M.
,
Werner
,
C.
,
Holzgraefe
,
M.
,
Kroczek
,
G.
,
Mehrholz
,
J.
,
Wingendorf
,
I.
,
Hoölig
,
G.
,
Koch
,
R.
, and
Hesse
,
S.
,
2007
, “
Repetitive Locomotor Training and Physiotherapy Improve Walking and Basic Activities of Daily Living After Stroke: A Single-Blind, Randomized Multicentre Trial (DEutsche GAngtrainerStudie, DEGAS)
,”
Clin. Rehabil.
,
21
(
1
), pp.
17
27
.10.1177/0269215506071281
4.
Kwakkel
,
G.
,
Kollen
,
B. J.
, and
Krebs
,
H. I.
,
2008
, “
Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review
,”
Neurorehabilitation Neural Repair
,
22
(
2
), pp.
111
121
.10.1177/1545968307305457
5.
Lo
,
H. S.
, and
Xie
,
S. Q.
,
2012
, “
Exoskeleton Robots for Upper-Limb Rehabilitation: State of the Art and Future Prospects
,”
Med. Eng. Phys.
,
34
(
3
), pp.
261
268
.10.1016/j.medengphy.2011.10.004
6.
Krebs
,
H. I.
,
Hogan
,
N.
,
Volpe
,
B. T.
,
Aisen
,
M. L.
,
Edelstein
,
L.
, and
Diels
,
C.
,
1999
, “
Overview of Clinical Trials With MIT-MANUS: A Robot-Aided Neuro-Rehabilitation Facility
,”
Technol. Health Care
,
7
(
6
), pp.
419
423
.10.3233/THC-1999-7606
7.
Hogan
,
N.
,
Krebs
,
H. I.
,
Charnnarong
,
J.
,
Srikrishna
,
P.
, and
Sharon
,
A.
,
1992
, “
MIT-MANUS: A Workstation for Manual Therapy and Training. I
,”
Proceedings of the IEEE International Workshop on Robot and Human Communication
, Tokyo, Japan, Aug. 6, pp.
161
165
.10.1109/ROMAN.1992.253895
8.
Hogan
,
N.
,
Krebs
,
H. I.
,
Charnnarong
,
J.
,
Srikrishna
,
P.
, and
Sharon
,
A.
,
1993
, “
MIT-MANUS: A Workstation for Manual Therapy and Training II
,” SPIE Vol. 1833 Telemanipulator Technology, Boston, MA, pp.
28
34
.10.1117/12.142124
9.
Krebs
,
H. I.
,
Palazzolo
,
J. J.
,
Dipietro
,
L.
,
Ferraro
,
M.
,
Krol
,
J.
,
Rannekleiv
,
K.
,
Volpe
,
B. T.
, and
Hogan
,
N.
,
2003
, “
Rehabilitation Robotics: Performance-Based Progressive Robot-Assisted Therapy
,”
Auton. Rob.
,
15
(
1
), pp.
7
20
.10.1023/A:1024494031121
10.
Burgar
,
C. G.
,
Lum
,
P. S.
,
Scremin
,
A. M.
,
Garber
,
S. L.
,
Van der Loos
,
H. F.
,
Kenney
,
D.
, and
Shor
,
P.
,
2011
, “
Robot-Assisted Upper-Limb Therapy in Acute Rehabilitation Setting Following Stroke: Department of Veterans Affairs Multisite Clinical Trial
,”
J. Rehabil. Res. Dev.
,
48
(
4
), pp.
445
458
.10.1682/JRRD.2010.04.0062
11.
Luo
,
D.
, Schauer, T.,
Roth
,
M.
, and
Raisch
,
J.
,
2012
, “
Position and Orientation Control of an Omni-Directional Mobile Rehabilitation Robot
,”
2012 IEEE International Conference on Control Applications
, Dubrovnik, Croatia, Oct. 3–5 pp.
50
56
.10.1109/CCA.2012.6402680
12.
Zhao
,
P.
,
Zhang
,
Y.
,
Haiwei
,
G.
,
Xueting
,
D.
, and
Chen
,
H.
,
2021
, “
Design of a Single-Degree-of-Freedom Immersive Rehabilitation Device for Clustered Upper-Limb Motion
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031006
.10.1115/1.4050150
13.
Nef
,
T.
,
Guidali
,
M.
, and
Riener
,
R.
,
2009
, “
ARMin III–Arm Therapy Exoskeleton With an Ergonomic Shoulder Actuation
,”
Appl. Bionics Biomech.
,
6
(
2
), pp.
127
142
.10.1080/11762320902840179
14.
Nef
,
T.
,
Quinter
,
G.
,
Müller
,
R.
, and
Riener
,
R.
,
2009
, “
Effects of Arm Training With the Robotic Device ARMin I in Chronic Stroke: Three Single Cases
,”
Neurodegener. Dis.
,
6
(
5–6
), pp.
240
251
.10.1159/000262444
15.
Staubli
,
P.
,
Nef
,
T.
,
Klamroth-Marganska
,
V.
, and
Riener
,
R.
,
2009
, “
Effects of Intensive Arm Training With the Rehabilitation Robot ARMin II in Chronic Stroke Patients: Four Single-Cases
,”
J. Neuroeng. Rehabil.
,
6
(
1
), p.
46
.10.1186/1743-0003-6-46
16.
Zhang
,
H.
,
Austin
,
H.
,
Buchanan
,
S.
,
Herman
,
R.
,
Koeneman
,
J.
, and
He
,
J.
,
2011
, “
Feasibility Studies of Robot-Assisted Stroke Rehabilitation at Clinic and Home Settings Using RUPERT
,”
Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics
,
Zurich, Switzerland
,
June 29–July 1
, pp. 1–6.10.1109/ICORR.2011.5975440
17.
Chen
,
Y.
,
Li
,
G.
,
Zhu
,
Y.
,
Zhao
,
J.
, and
Cai
,
H.
,
2014
, “
Design of a 6-DOF Upper Limb Rehabilitation Exoskeleton With Parallel Actuated Joints
,”
Bio-Med. Mater. Eng.
,
24
(
6
), pp.
2527
2535
.10.3233/BME-141067
18.
Wang
,
H.
,
Xu
,
H.
,
Tian
,
Y.
, and
Tang
,
H.
,
2020
, “
α-Variable Adaptive Model Free Control of iReHave Upper-Limb Exoskeleton
,”
Adv. Eng. Software
,
148
(
10015
), p.
102872
.10.1016/j.advengsoft.2020.102872
19.
Yan
,
H.
,
Yang
,
C.
,
Zhang
,
Y.
, and
Wang
,
Y.
,
2014
, “
Design and Validation of a Compatible 3-Degrees of Freedom Shoulder Exoskeleton With an Adaptive Center of Rotation
,”
ASME J. Mech. Des.
,
136
(
7
), p.
071006
.10.1115/1.4027284
20.
Piovesan
,
D.
,
Kumar Shanmugam
,
S.
,
Arumugam
,
Y.
,
Restifo
,
A.
,
Jackson
,
C.
,
Devine
,
N.
, and
Legters
,
K.
,
2020
, “
Improving Healthcare Access: A Preliminary Design of a Low-Cost Arm Rehabilitation Device
,”
ASME J. Med. Devices
,
14
(
1
), pp.
1
10
.10.1115/1.4045964
21.
Ortega
,
A. A. J.
,
Del
,
M. D. L. A. O.
,
Hellström
,
P.
,
Åstrand
,
E.
, and
Ekström
,
M.
,
2022
, “
On Understanding the Role of Exoskeleton Robots in Hand Rehabilitation: A Brief Review
,” Proceedings of the 2022 8th International Engineering, Sciences and Technology Conference (
IESTEC
),
Panama
,
Oct. 19–21
, pp.
432
439
.10.1109/IESTEC54539.2022.00074
22.
Ye
,
C.
,
Sun
,
Y.
,
Yu
,
S.
,
Ding
,
J.
, and
Jiang
,
C.
,
2022
, “
Motion Optimization of an Omnidirectional Mobile Robot With MY Wheel Based on Contact Mechanics
,”
Ind. Rob.
,
49
(
5
), pp.
962
972
.10.1108/IR-10-2021-0251
23.
Bischoff
,
R.
,
Huggenberger
,
U.
, and
Prassler
,
E.
,
2011
, “
KUKA youBot—A Mobile Manipulator for Research and Education
,”
Proceedings of the 2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
1
4
.10.1109/ICRA.2011.5980575
24.
He
,
C.
,
Wu
,
D.
,
Chen
,
K.
,
Liu
,
F.
, and
Fan
,
N.
,
2019
, “
Analysis of the Mecanum Wheel Arrangement of an Omnidirectional Vehicle
,”
Proc. Inst. Mech. Eng., Part C
,
233
(
15
), pp.
5329
5340
.10.1177/0954406219843568
25.
West
,
M.
, and
Asada
,
H. H.
,
1995
, “
Design and Control of Ball Wheel Omnidirectional Vehicles
,”
Proceedings of the 1995 IEEE International Conference on Robotics and Automation
,
Nagoya, Japan
,
May 21–27
, pp.
1931
1938
.10.1109/ROBOT.1995.525547
26.
Ye
,
C.
,
Jiang
,
X.
,
Yu
,
S.
, and
Jiang
,
C.
,
2016
, “
A Tracking Method of an Assembling Omni-Directional Mobile Robot
,” Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics (
ROBIO
),
Qingdao, China
,
Dec. 3–7
, pp.
1029
1033
.10.1109/ROBIO.2016.7866460
27.
Yu
,
S.
,
Ye
,
C.
,
Liu
,
H.
, and
Chen
,
J.
,
2016
, “
Development of an Omnidirectional Automated Guided Vehicle With MY3 Wheels
,”
Perspect. Sci.
,
7
, pp.
364
368
.10.1016/j.pisc.2015.11.056
28.
Garzo
,
A.
,
Jung
,
J. H.
,
Arcas-Ruiz-Ruano
,
J.
,
Perry
,
J. C.
, and
Keller
,
T.
,
2023
, “
ArmAssist: A Telerehabilitation Solution for Upper-Limb Rehabilitation at Home
,”
IEEE Rob. Autom. Mag.
,
30
(
1
), pp.
62
71
.10.1109/MRA.2022.3225716
29.
Ye
,
C.
,
Wang
,
Z.
,
Yu
,
S.
, and
Jiang
,
C.
,
2024
, “
An Image-Based Interactive Training Method of Upper Limb Rehabilitation Robot
,”
Machines
,
12
(
5
), p.
348
.10.3390/machines12050348
30.
Ye
,
C.
,
Ma
,
S.
,
Li
,
B.
, and
Wang
,
Y.
,
2009
, “
Modular Universal Unit for a Snake-Like Robot and Reconfigurable Robots
,”
Adv. Rob.
,
23
(
7–8
), pp.
865
887
.10.1163/156855309X443061
31.
Patten
,
C.
,
Lexell
,
J.
, and
Brown
,
H. E.
,
2004
, “
Weakness and Strength Training in Persons With Poststroke Hemiplegia: Rationale, Method, and Efficacy
,”
J. Rehabil. Res. Dev.
,
41
(
3A
), pp.
293
312
.10.1682/JRRD.2004.03.0293
32.
DeBoon
,
B.
,
Foley
,
R. C.
,
Nokleby
,
S. B.
,
La Delfa
,
N. J.
, and
Rossa
,
C.
,
2020
, “
9 Degree-of-Freedom Kinematic Modelling of the Upper Limb Complex for Constrained Workspace Evaluation
,”
ASME J. Biomech. Eng.
, 143(2), p.
021009
.10.1115/1.4048573
33.
Shimizu
,
M.
,
Kakuya
,
H.
,
Yoon
,
W.
,
Kitagaki
,
K.
, and
Kosuge
,
K.
,
2008
, “
Analytical Inverse Kinematic Computation for 7-DOF Redundant Manipulators With Joint Limits and Its Application to Redundancy Resolution
,”
IEEE Trans. Rob.
,
24
(
5
), pp.
1131
1142
.10.1109/TRO.2008.2003266
34.
Kumar
,
G. S.
, and
Das
,
A.
,
2012
, “
Analysis and Ergonomic Improvement of Working Postures in Cast House Work Station Using JACK Modelling
,”
Int. J. Human Factors Modell. Simul.
,
3
(
1
), p.
16
.10.1504/IJHFMS.2012.050060
You do not currently have access to this content.