Abstract

A 1DOF lower limb rehabilitation robot is presented for delivering leg extension therapy to bed-bound stroke patients. Such a compact and minimal system may be beneficial in terms of compatibility with pre-existing hospital equipment, ease-of-use, safety, and cost. A set of design criteria was created based on the literature and on previous field work at a local hospital. The device uses admittance control to apply assistive or resistive forces, and can also use haptic feedback to increase user engagement. A pilot study on six healthy participants was used to determine the feasibility of such a minimal system in administering assistance or resistance through the leg extension exercise. Results indicate that a single DOF is capable of decreasing trajectory error with assistance and increasing user effort with resistance. Observations confirm that the minimal system is effective; however, extending the robot with additional DOFs so that it can target multiple bed-bound exercises may help to increase therapy duration.

References

1.
Benjamin
,
E. J.
,
Virani
,
S. S.
,
Callaway
,
C. W.
,
Chamberlain
,
A. M.
,
Chang
,
A. R.
,
Cheng
,
S.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Delling
,
F. N.
,
Deo
,
R.
,
De Ferranti
,
S. D.
,
Ferguson
,
J. F.
,
Fornage
,
M.
,
Gillespie
,
C.
,
Isasi
,
C. R.
,
Jiménez
,
M. C.
,
Jordan
,
L. C.
,
Judd
,
S. E.
,
Lackland
,
D.
,
Lichtman
,
J. H.
,
Lisabeth
,
L.
,
Liu
,
S.
,
Longenecker
,
C. T.
,
Lutsey
,
P. L.
,
MacKey
,
J. S.
,
Matchar
,
D. B.
,
Matsushita
,
K.
,
Mussolino
,
M. E.
,
Nasir
,
K.
,
O'Flaherty
,
M.
,
Palaniappan
,
L. P.
,
Pandey
,
A.
,
Pandey
,
D. K.
,
Reeves
,
M. J.
,
Ritchey
,
M. D.
,
Rodriguez
,
C. J.
,
Roth
,
G. A.
,
Rosamond
,
W. D.
,
Sampson
,
U. K.
,
Satou
,
G. M.
,
Shah
,
S. H.
,
Spartano
,
N. L.
,
Tirschwell
,
D. L.
,
Tsao
,
C. W.
,
Voeks
,
J. H.
,
Willey
,
J. Z.
,
Wilkins
,
J. T.
,
Wu
,
J. H.
,
Alger
,
H. M.
,
Wong
,
S. S.
, and
Muntner
,
P.
,
2018
, “
Heart Disease and Stroke Statistics - 2018 Update: A Report From the American Heart Association
,”
Circulation
,
137
(
12
), pp.
E67
E492
.10.1161/CIR.0000000000000558
2.
Hebert
,
D.
,
Lindsay
,
M. P.
,
McIntyre
,
A.
,
Kirton
,
A.
,
Rumney
,
P. G.
,
Bagg
,
S.
,
Bayley
,
M.
,
Dowlatshahi
,
D.
,
Dukelow
,
S.
,
Garnhum
,
M.
,
Glasser
,
E.
,
Halabi
,
M. L.
,
Kang
,
E.
,
MacKay-Lyons
,
M.
,
Martino
,
R.
,
Rochette
,
A.
,
Rowe
,
S.
,
Salbach
,
N.
,
Semenko
,
B.
,
Stack
,
B.
,
Swinton
,
L.
,
Weber
,
V.
,
Mayer
,
M.
,
Verrilli
,
S.
,
DeVeber
,
G.
,
Andersen
,
J.
,
Barlow
,
K.
,
Cassidy
,
C.
,
Dilenge
,
M. E.
,
Fehlings
,
D.
,
Hung
,
R.
,
Iruthayarajah
,
J.
,
Lenz
,
L.
,
Majnemer
,
A.
,
Purtzki
,
J.
,
Rafay
,
M.
,
Sonnenberg
,
L. K.
,
Townley
,
A.
,
Janzen
,
S.
,
Foley
,
N.
, and
Teasell
,
R.
,
2016
, “
Canadian Stroke Best Practice Recommendations: Stroke Rehabilitation Practice Guidelines, Update 2015
,”
Int. J. Stroke
,
11
(
4
), pp.
459
484
.10.1177/1747493016643553
3.
Adamson
,
J.
,
Beswick
,
A.
, and
Ebrahim
,
S.
,
2004
, “
Is Stroke the Most Common Cause of Disability?
,”
J. Stroke Cerebrovascular Diseases
,
13
(
4
), pp.
171
177
.10.1016/j.jstrokecerebrovasdis.2004.06.003
4.
Krebs
,
H.
,
Dipietro
,
L.
,
Levy-Tzedek
,
S.
,
Fasoli
,
S.
,
Rykman-Berland
,
A.
,
Zipse
,
J.
,
Fawcett
,
J.
,
Stein
,
J.
,
Poizner
,
H.
,
Lo
,
A.
,
Volpe
,
B.
, and
Hogan
,
N.
,
2008
, “
A Paradigm Shift for Rehabilitation Robotics
,”
IEEE Eng. Med. Biol. Mag.
,
27
(
4
), pp.
61
70
.10.1109/MEMB.2008.919498
5.
Horn
,
S. D.
,
DeJong
,
G.
,
Smout
,
R. J.
,
Gassaway
,
J.
,
James
,
R.
, and
Conroy
,
B.
,
2005
, “
Stroke Rehabilitation Patients, Practice, and Outcomes: Is Earlier and More Aggressive Therapy Better?
,”
Arch. Phys. Med. Rehabil.
,
86
(
12
), pp.
101
114
.10.1016/j.apmr.2005.09.016
6.
Lohse
,
K. R.
,
Lang
,
C. E.
, and
Boyd
,
L. A.
,
2014
, “
Is More Better? Using Metadata to Explore Dose-Response Relationships in Stroke Rehabilitation
,”
Stroke
,
45
(
7
), pp.
2053
2058
.10.1161/STROKEAHA.114.004695
7.
Casaubon
,
L. K.
,
Boulanger
,
J.-M.
,
Glasser
,
E.
,
Blacquiere
,
D.
,
Boucher
,
S.
,
Brown
,
K.
,
Goddard
,
T.
,
Gordon
,
J.
,
Horton
,
M.
,
Lalonde
,
J.
,
LaRivière
,
C.
,
Lavoie
,
P.
,
Leslie
,
P.
,
McNeill
,
J.
,
Menon
,
B. K.
,
Moses
,
B.
,
Penn
,
M.
,
Perry
,
J.
,
Snieder
,
E.
,
Tymianski
,
D.
,
Foley
,
N.
,
Smith
,
E. E.
,
Gubitz
,
G.
,
Hill
,
M. D.
, and
Lindsay
,
P.
,
2016
, “
Canadian Stroke Best Practice Recommendations: Acute Inpatient Stroke Care Guidelines, Update 2015
,”
Int. J. Stroke
,
11
(
2
), pp.
239
252
.10.1177/1747493015622461
8.
Lang
,
C. E.
,
MacDonald
,
J. R.
,
Reisman
,
D. S.
,
Boyd
,
L.
,
Jacobson Kimberley
,
T.
,
Schindler-Ivens
,
S. M.
,
Hornby
,
T. G.
,
Ross
,
S. A.
, and
Scheets
,
P. L.
,
2009
, “
Observation of Amounts of Movement Practice Provided During Stroke Rehabilitation
,”
Arch. Phys. Med. Rehabil.
,
90
(
10
), pp.
1692
1698
.10.1016/j.apmr.2009.04.005
9.
McHugh
,
G.
, and
Swain
,
I. D.
,
2013
, “
A Comparison Between Reported and Ideal Patient-to-Therapist Ratios for Stroke Rehabilitation
,”
Health
,
05
(
06
), pp.
105
112
.10.4236/health.2013.56A2016
10.
Colombo
,
G.
,
Wirz
,
M.
, and
Dietz
,
V.
,
2001
, “
Driven Gait Orthosis for Improvement of Locomotor Training in Paraplegic Patients
,”
Spinal Cord
,
39
(
5
), pp.
252
255
.10.1038/sj.sc.3101154
11.
Schmidt
,
H.
,
Hesse
,
S.
,
Bernhardt
,
R.
, and
Krüger
,
J.
,
2005
, “
Haptic Walker–A Novel Haptic Foot Device
,”
ACM Trans. Appl. Percept.
,
2
(
2
), pp.
166
180
.10.1145/1060581.1060589
12.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H.
, and
Van Der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
13.
Banala
,
S. K.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2007
, “
Active Leg Exoskeleton (ALEX) for Gait Rehabilitation of Motor-Impaired Patients
,”
IEEE Tenth International Conference on Rehabilitation Robotics, ICORR'07
,
Noordwijk, The Netherlands, June 13–15, pp.
401
407
.10.1109/ICORR.2007.4428456
14.
Jezernik
,
S.
,
Colombo
,
G.
,
Keller
,
T.
,
Frueh
,
H.
, and
Morari
,
M.
,
2003
, “
Robotic Orthosis Lokomat: A Rehabilitation and Research Tool
,”
Neuromodulation
,
6
(
2
), pp.
108
115
.10.1046/j.1525-1403.2003.03017.x
15.
Hesse
,
S.
,
Waldner
,
A.
, and
Tomelleri
,
C.
,
2010
, “
Innovative Gait Robot for the Repetitive Practice of Floor Walking and stair climbing Up and Down in stroke patients
,”
J. NeuroEng. Rehabil.
,
7
(
1
), p.
30
.10.1186/1743-0003-7-30
16.
Monaco
,
V.
,
Galardi
,
G.
,
Coscia
,
M.
,
Martelli
,
D.
, and
Micera
,
S.
,
2012
, “
Design and Evaluation of NEUROBike: A Neurorehabilitative Platform for Bedridden Post-Stroke Patients
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
6
), pp.
845
852
.10.1109/TNSRE.2012.2212914
17.
MOTOmed
,
2020
, “Move Differently,” RECK-Technik GmbH, Betzenweiler, Germany, accessed May 25, https://www.motomed.com/en/
18.
ANYMOV
,
2019
, “Robotic Platform for Motor and Functional Rehabilitation,” BTS Bioengineering Corp., Quincy, MA, accessed May 25, 2020, https://www.btsbioengineering.com/products/anymov/
19.
Erigo
, 2020, “Erigo,” Hocoma, Volketswil, Switzerland, accessed May 25, 2020, https://www.hocoma.com/solutions/erigo/
20.
Chisholm
,
K. J.
,
Klumper
,
K.
,
Mullins
,
A.
, and
Ahmadi
,
M.
,
2014
, “
A Task Oriented Haptic Gait Rehabilitation Robot
,”
Mechatronics
,
24
(
8
), pp.
1083
1091
.10.1016/j.mechatronics.2014.07.001
21.
Berezny
,
N. J.
,
Dowlatshahi
,
D.
, and
Ahmadi
,
M.
, May
2019
, “
Novel Concept of a Lower-Limb Rehabilitation Robot Targeting Bed-Bound Acute Stroke Patients
,”
CMBES
,
42
, pp.
1
4
. https://www.researchgate.net/publication/335842167_Novel_Concept_of_a_Lower-limb_Rehabilitation_Robot_Targeting_Bed-bound_Acute_Stroke_Patients
22.
Hogan
,
N.
,
1985
, “
Impedance Control: An Approach to Manipulation
,”
American Control Conference
, San Diego, CA, June 6–8, pp.
304
313
.10.23919/ACC.1984.4788393
23.
Adams
,
R.
, and
Hannaford
,
B.
,
1999
, “
Stable Haptic Interaction With Virtual Environments
,”
IEEE Trans. Rob. Autom.
,
15
(
3
), pp.
465
474
.10.1109/70.768179
24.
Berezny
,
N.
,
Dowlatshahi
,
D.
, and
Ahmadi
,
M.
,
2019
, “
Interaction Control and Haptic Feedback for a Lower-Limb Rehabilitation Robot With Virtual Environments
,”
International Conference of Control, Dynamic Systems, and Robotics
, Ottawa, ON, Canada, June 6–7.10.11159/cdsr19.145
You do not currently have access to this content.