Abstract

This study proposes an optically sensorized force-sensing tendon for minimally invasive surgical instruments. The tendon is composed of a high strength, polarization maintaining (PM) optical fiber with Bragg sensors (FBGs) that negate the cross-sensitivity of conventional FBGs. The PM-FBG fiber is locally reinforced with high stiffness Kevlar that enhances its load carrying capacity while enabling higher curvatures in tendon routing. The composite tendon has a mean diameter of ∼268 μm which preserves the form-factor of instruments within this scope. Importantly, the tendons can improve the functionality of such tools by enabling local force and tissue-resistance estimation. This paper explores the performance of these sensorized tendons in terms of strength, stability, response under dynamic load, friction, and sensitivity as a force measuring tool within an 18 Ga articulate Nitinol (NiTi) cannula (a proxy for potential applications). Results reaffirm the potential of a bi-modal sensing and actuation component within instruments for robotic surgery.

References

1.
Taylor
,
R. H.
,
Menciassi
,
A.
,
Fichtinger
,
G.
, and
Dario
,
P.
,
2008
, “
Medical Robotics and Computer-Integrated Surgery
,”
Springer Handbook of Robotics
,
Springer
, Berlin, pp.
1199
1222
.
2.
Daouadi
,
M.
,
Zureikat
,
A. H.
,
Zenati
,
M. S.
,
Choudry
,
H.
,
Tsung
,
A.
,
Bartlett
,
D. L.
,
Hughes
,
S. J.
,
Lee
,
K. K.
,
Moser
,
A. J.
, and
Zeh
,
H. J.
,
2013
, “
Robot-Assisted Minimally Invasive Distal Pancreatectomy Is Superior to the Laparoscopic Technique
,”
Ann. Surg.
,
257
(
1
), pp.
128
132
.
3.
Corcione
,
F.
,
Esposito
,
C.
,
Cuccurullo
,
D.
,
Settembre
,
A.
,
Miranda
,
N.
,
Amato
,
F.
,
Pirozzi
,
F.
, and
Caiazzo
,
P.
,
2005
, “
Advantages and Limits of Robot-Assisted Laparoscopic Surgery: Preliminary Experience
,”
Surg. Endoscopy Other Interventional Tech.
,
19
(
1
), pp.
117
119
.
4.
Tholey
,
G.
,
Desai
,
J. P.
, and
Castellanos
,
A. E.
,
2005
, “
Force Feedback Plays a Significant Role in Minimally Invasive Surgery: Results and Analysis
,”
Ann. Surg.
,
241
(
1
), pp.
102
109
.
5.
Wagner
,
C.
,
Stylopoulos
,
N.
, and
Howe
,
R.
,
2002
, “
Force Feedback in Surgery: Analysis of Blunt Dissection
,”
Tenth Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, Orlando, FL, Mar. 24–25, pp. 68–74.
6.
Reiley
,
C. E.
,
Akinbiyi
,
T.
,
Burschka
,
D.
,
Chang
,
D. C.
,
Okamura
,
A. M.
, and
Yuh
,
D. D.
,
2008
, “
Effects of Visual Force Feedback on Robot-Assisted Surgical Task Performance
,”
J. Thorac. Cardiovasc. Surg.
,
135
(
1
), pp.
196
202
.
7.
Lee
,
D.-H.
,
Kim
,
U.
,
Gulrez
,
T.
,
Yoon
,
W. J.
,
Hannaford
,
B.
, and
Choi
,
H. R.
,
2016
, “
A Laparoscopic Grasping Tool With Force Sensing Capability
,”
IEEE/ASME Trans. Mechatronics
,
21
(
1
), pp.
130
141
.
8.
Trejos
,
A.
,
Patel
,
R.
,
Naish
,
M.
,
Lyle
,
A.
, and
Schlachta
,
C.
,
2009
, “
A Sensorized Instrument for Skills Assessment and Training in Minimally Invasive Surgery
,”
ASME J. Med. Devices
,
3
(
4
), p.
041002
.
9.
He
,
C.
,
Wang
,
S.
,
Sang
,
H.
,
Li
,
J.
, and
Zhang
,
L.
,
2014
, “
Force Sensing of Multiple-Dof Cable-Driven Instruments for Minimally Invasive Robotic Surgery
,”
Int. J. Med. Rob. Comput. Assisted Surg.
,
10
(
3
), pp.
314
324
.
10.
Elayaperumal
,
S.
,
Bae
,
J. H.
,
Daniel
,
B. L.
, and
Cutkosky
,
M. R.
,
2014
, “
Detection of Membrane Puncture With Haptic Feedback Using a Tip-Force Sensing Needle
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS 2014
), Chicago, IL, Sept. 4–18, pp.
3975
3981
.
11.
Gijbels
,
A.
,
Vander Poorten
,
E. B.
,
Stalmans
,
P.
, and
Reynaerts
,
D.
,
2015
, “
Development and Experimental Validation of a Force Sensing Needle for Robotically Assisted Retinal Vein Cannulations
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), May 26–30, Seattle, WA, pp.
2270
2276
.
12.
Kim
,
U.
,
Lee
,
D.-H.
,
Yoon
,
W. J.
,
Hannaford
,
B.
, and
Choi
,
H. R.
,
2015
, “
Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1214
1224
.
13.
Pigeon
,
F.
,
Pelissier
,
S.
,
Mure-Ravaud
,
A.
,
Gagnaire
,
H.
, and
Veillas
,
C.
,
1992
, “
Optical Fibre Young Modulus Measurement Using an Optical Method
,”
Electron. Lett.
,
28
(
11
), pp.
1034
1035
.
14.
Cease
,
H.
,
Derwent
,
P.
,
Diehl
,
H.
,
Fast
,
J.
, and
Finley
,
D.
,
2006
, “
Measurement of Mechanical Properties of Three Epoxy Adhesives at Cryogenic Temperatures for CCD Construction
,” Fermi National Accelerator Laboratory, Batavia, IL.
15.
Palli
,
G.
,
Borghesan
,
G.
, and
Melchiorri
,
C.
,
2009
, “
Tendon-Based Transmission Systems for Robotic Devices: Models and Control Algorithms
,”
IEEE International Conference on Robotics and Automation
(
ICRA'09
), Kobe, Japan, May 12–17, pp.
4063
4068
.
16.
York
,
P. A.
,
Swaney
,
P. J.
,
Gilbert
,
H. B.
, and
Webster
,
R. J.
,
2015
, “
A Wrist for Needle-Sized Surgical Robots
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Seattle, WA, May 26–30, pp.
1776
1781
.
17.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Rob.
,
24
(
6
), pp.
1262
1273
.
18.
Ibrahim
,
S. K.
,
O'Dowd
,
J.
,
McCue
,
R.
,
Honniball
,
A.
, and
Farnan
,
M.
,
2015
, “
Design Challenges of a High Speed Tunable Laser Interrogator for Future Spacecraft Health Monitoring
,” CLEO: Applications and Technology, Optical Society of America, San Jose, CA, May 10–15, p.
ATu1M–3
.
19.
Ibrahim
,
S. K.
,
Farnan
,
M.
,
Karabacak
,
D. M.
, and
Singer
,
J. M.
,
2016
, “
Enabling Technologies for Fiber Optic Sensing
,”
SPIE Photonics Europe, International Society for Optics and Photonics
, Brussels, Belgium, Apr. 3–7, p.
98990
.
You do not currently have access to this content.