Abstract

Tactile sensing is an emerging technological advancement in surgical robotics in order to probe interactions between confined tissue environments and instruments based on touch information. The tactile sense can assist in improving the efficiency of the whole practice and hence enhance precision, control, and safety during surgery. This paper demonstrates a distinct proof-of-concept therapeutic device equipped with a soft tactile sensor. The tactile sensor was custom-made using flexible piezoresistive materials and conductive ink, wrapped with a biocompatible hydrogel polymer matrix for safer human–tissue interactions. The proposed tactile sensor was then calibrated and its performance was compared with gold standard sensors. It was further tested with a continuous force (5 N) for an extended period of time (about 6 h) to address robustness and repeatability. The sensor showed a sensitivity of 0.833 N−1 and a drift of ≤1%. Successful cadaver experiment demonstrates the efficiency of tactile sensing assistance to clinicians.

References

1.
Banerjee
,
H.
,
Tse
,
Z. T. H.
, and
Ren
,
H.
,
2018
, “
Soft Robotics With Compliance and Adaptation for Biomedical Applications and Forthcoming Challenges
,”
Int. J. Rob. Autom.
,
33
(
1
), epub.
2.
Ren
,
H.
, and
Banerjee
,
H.
,
2018
, “
A Preface in Electromagnetic Robotic Actuation and Sensing in Medicine
,”
Electromagnetic Actuation and Sensing in Medical Robotics
,
Springer
,
Singapore
, pp.
1
10
.
3.
Banerjee
,
H.
,
Shen
,
S.
, and
Ren
,
H.
,
2018
, “
Magnetically Actuated Minimally Invasive Microbots for Biomedical Applications
,”
Electromagnetic Actuation and Sensing in Medical Robotics
,
Springer
,
Singapore
, pp.
11
41
.
4.
Li
,
Z.
,
Wu
,
L.
,
Yu
,
H.
, and
Ren
,
H.
,
2017
, “
Kinematic Comparison of Surgical Tendon-Driven Manipulators and Concentric Tube Manipulators
,”
Mech. Mach. Theory
,
107
, pp.
148
165
.
5.
Nadeau
,
C.
,
Ren
,
H.
,
Krupa
,
A.
, and
Dupont
,
P. E.
,
2015
, “
Intensity-Based Visual Servoing for Instrument and Tissue Tracking in 3D Ultrasound Volumes
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
1
), pp.
367
371
.
6.
Sun
,
Y.
,
Song
,
S.
,
Liang
,
X.
, and
Ren
,
H.
,
2016
, “
A Miniature Soft Robotic Manipulator Based on Novel Fabrication Methods
,”
IEEE Rob. Autom. Lett.
,
1
(
2
), pp.
617
623
.
7.
Majidi
,
C.
,
2014
, “
Soft Robotics: A Perspective–Current Trends and Prospects for the Future
,”
Soft Rob.
,
1
(
1
), pp.
5
11
.
8.
Riek
,
L. D.
,
2014
, “
The Social Co-Robotics Problem Space: Six Key Challenges
,” Robotics Challenges and Vision (RCV2013) Workshop at Robotics: Science and Systems (RSS), Berlin, Germany, June 24–28.
9.
Lee
,
M. H.
, and
Nicholls
,
H. R.
,
1999
, “
Review Article Tactile Sensing for Mechatronics—A State of the Art Survey
,”
Mechatronics
,
9
(
1
), pp.
1
31
.
10.
Sergio
,
M.
,
Manaresi
,
N.
,
Tartagni
,
M.
,
Guerrieri
,
R.
, and
Canegallo
,
R.
,
2002
, “
A Textile Based Capacitive Pressure Sensor
,”
Sensors
, Orlando, FL, June 12–14, pp.
1625
1630
.
11.
Wang
,
Y.
,
Zheng
,
J.
,
Ren
,
G.
,
Zhang
,
P.
, and
Xu
,
C.
,
2011
, “
A Flexible Piezoelectric Force Sensor Based on PVDF Fabrics
,”
Smart Mater. Struct.
,
20
(
4
), p.
045009
.
12.
Rothmaier
,
M.
,
Luong
,
M. P.
, and
Clemens
,
F.
,
2008
, “
Textile Pressure Sensor Made of Flexible Plastic Optical Fibers
,”
Sensors
,
8
(
7
), pp.
4318
4329
.
13.
Roh
,
J.-S.
,
Mann
,
Y.
,
Freed
,
A.
,
Wessel
,
D.
,
Berkeley
,
U.
,
Freed
,
A.
,
Street
,
A.
, and
Wessel
,
D.
,
2011
, “
Robust and Reliable Fabric, Piezoresistive Multitouch Sensing Surfaces for Musical Controllers
,” NIME, Oslo, Norway, May 30–June 1, pp.
393
398
.
14.
Puangmali
,
P.
,
Althoefer
,
K.
,
Seneviratne
,
L. D.
,
Murphy
,
D.
, and
Dasgupta
,
P.
,
2008
, “
State-of-the-Art in Force and Tactile Sensing for Minimally Invasive Surgery
,”
IEEE Sens. J.
,
8
(
4
), pp.
371
381
.
15.
Song
,
S.
,
Li
,
Z.
,
Ren
,
H.
, and
Yu
,
H.
,
2015
, “
Shape Reconstruction for Wire-Driven Flexible Robots Based on Bezier Curve and Electromagnetic Positioning
,”
Mechatronics
,
29
(
99
), pp.
28
35
.
16.
Ren
,
H.
,
Vasilyev
,
N. V.
, and
Dupont
,
P. E.
,
2011
, “
Detection of Curved Robots Using 3D Ultrasound
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), San Francisco, CA, Sept. 25–30, pp.
2083
2089
.
17.
Stassi
,
S.
,
Cauda
,
V.
,
Canavese
,
G.
, and
Pirri
,
C. F.
,
2014
, “
Flexible Tactile Sensing Based on Piezoresistive Composites: A Review
,”
Sensors
,
14
(
3
), pp.
5296
5332
.
18.
Ashruf
,
C.
,
2002
, “
Thin Flexible Pressure Sensors
,”
Sensor Rev.
,
22
(
4
), pp.
322
327
.
19.
Kirthika
,
S. K.
,
Ponraj
,
G.
, and
Ren
,
H.
,
2017
, “
Fabrication and Comparative Study on Sensing Characteristics of Soft Textile-Layered Tactile Sensors
,”
IEEE Sens. Lett.
,
1
(
3
), pp.
1
4
.
20.
Banerjee
,
H.
, and
Ren
,
H.
,
2018
, “
Electromagnetically Responsive Soft-Flexible Robots and Sensors for Biomedical Applications and Impending Challenges
,”
Electromagnetic Actuation and Sensing in Medical Robotics
,
Springer
,
Singapore
, pp.
43
72
.
21.
Duke
,
W. S.
, and
Terris
,
D. J.
,
2014
, “
Robotic Thyroidectomy: Facelift Approach
,”
Curr. Surg. Rep.
,
2
(
1
), p.
36
.
22.
Chang
,
E. H. E.
,
Kim
,
H. Y.
,
Koh
,
Y. W.
, and
Chung
,
W. Y.
,
2017
, “
Overview of Robotic Thyroidectomy
,”
Gland Surg.
,
6
(
3
), p.
218
.
23.
Terris
,
D. J.
, and
Singer
,
M. C.
,
2012
, “
Qualitative and Quantitative Differences Between 2 Robotic Thyroidectomy Techniques
,”
Otolaryngol.–Head Neck Surg.
,
147
(
1
), pp.
20
25
.
24.
Kuppersmith
,
R. B.
, and
Holsinger
,
F. C.
,
2011
, “
Robotic Thyroid Surgery: An Initial Experience With North American Patients
,”
Laryngoscope
,
121
(
3
), pp.
521
526
.
25.
Terris
,
D. J.
,
Tuffo
,
K. M.
, and
Fee
,
W. E.
,
1994
, “
Modified Facelift Incision for Parotidectomy
,”
J. Laryngol. Otol.
,
108
(
7
), pp.
574
578
.
26.
Kang
,
S.-W.
, and
Chung
,
W. Y.
,
2015
, “
Transaxillary Single-Incision Robotic Neck Dissection for Metastatic Thyroid Cancer
,”
Gland Surg.
,
4
(
5
), p.
388
.
27.
Singer
,
M. C.
,
Seybt
,
M. W.
, and
Terris
,
D. J.
,
2011
, “
Robotic Facelift Thyroidectomy—I: Preclinical Simulation and Morphometric Assessment
,”
Laryngoscope
,
121
(
8
), pp.
1631
1635
.
28.
Grandmougin
,
D.
,
Delolme
,
M.-C.
,
Reynaud
,
J.
, and
Barral
,
X.
,
2005
, “
Off-Pump Myocardial Revascularization in a Diabetic Patient With Severe Hemophilia B and Impaired Left Ventricular Function: Hematological and Operative Strategies
,”
J. Card. Surg.
,
20
(
4
), pp.
366
369
.
29.
Phillips
,
M. I.
, and
Tang
,
Y.
,
2012
, “
Genetic Modification of Stem Cells for Cardiac, Diabetic, and Hemophilia Transplantation Therapies
,”
Progress in Molecular Biology and Translational Science
, Vol.
111
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
285
304
.
30.
Gleiman
,
S. S.
,
2015
, “
Buttress Film With Hemostatic Action for Surgical Stapling Apparatus
,” U.S. Patent No. 9,084,602.
31.
Boateng
,
J. S.
,
Matthews
,
K. H.
,
Stevens
,
H. N.
, and
Eccleston
,
G. M.
,
2008
, “
Wound Healing Dressings and Drug Delivery Systems: A Review
,”
J. Pharm. Sci.
,
97
(
8
), pp.
2892
2923
.
32.
Ponraj
,
G.
,
Kirthika
,
S. K.
,
Lim
,
C. M.
, and
Ren
,
H.
,
2018
, “
Soft Tactile Sensors With Inkjet-Printing Conductivity and Hydrogel Biocompatibility for Retractors in Cadaveric Surgical Trials
,”
IEEE Sens. J.
,
18
(
23
), p.
9840
.
33.
Banerjee
,
H.
,
Aaron
,
O. Y. W.
,
Yeow
,
B. S.
, and
Ren
,
H.
, “
Fabrication and Initial Cadaveric Trials of Bi-Directional Soft Hydrogel Robotic Benders Aiming for Biocompatible Robot-Tissue Interactions
,” Third International Conference on Advanced Robotics and Mechatronics (
ICARM
), Singapore, July 18–20.
34.
Prituja
,
A.
,
Banerjee
,
H.
, and
Ren
,
H.
,
2018
, “
Electromagnetically Enhanced Soft and Flexible Bend Sensor: A Quantitative Analysis With Different Cores
,”
IEEE Sens. J.
,
18
(
9
), pp.
3580
3589
.
35.
Banerjee
,
H.
,
Suhail
,
M.
, and
Ren
,
H.
,
2018
, “
Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview With Impending Challenges
,”
Biomimetics
,
3
(
3
), p.
15
.
36.
Banerjee
,
H.
, and
Ren
,
H.
,
2017
, “
Optimizing Double-Network Hydrogel for Biomedical Soft Robots
,”
Soft Rob.
,
4
(
3
), pp.
191
201
.
37.
Okamura
,
A. M.
,
Simone
,
C.
, and
O'Leary
,
M. D.
,
2004
, “
Force Modeling for Needle Insertion Into Soft Tissue
,”
IEEE Trans. Biomed. Eng.
,
51
(
10
), pp.
1707
1716
.
38.
El-Erian
,
A. M.
,
2014
, “
Non Robotic Videoscopically Assisted Facelift (Retro-Auricular) Approach to Hemithyroidectomy in Selected Cases
,”
Med. J. Cairo Univ.
,
82
, pp.
331
339
.
39.
Bomeli
,
S. R.
,
Duke
,
W. S.
, and
Terris
,
D. J.
,
2015
, “
Robotic Facelift Thyroid Surgery
,”
Gland Surg.
,
4
(
5
), p.
403
.
40.
Duke
,
W. S.
,
Holsinger
,
F. C.
,
Kandil
,
E.
,
Richmon
,
J. D.
,
Singer
,
M. C.
, and
Terris
,
D. J.
,
2017
, “
Remote Access Robotic Facelift Thyroidectomy: A Multi-Institutional Experience
,”
World J. Surg.
,
41
(
1
), pp.
116
121
.
41.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Single-Motor Controlled Tendon-Driven Peristaltic Soft Origami Robot
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
064501
.
42.
Banerjee
,
H.
,
Pusalkar
,
N.
, and
Ren
,
H.
,
2018
, “
Preliminary Design and Performance Test of Tendon-Driven Origami-Inspired Soft Peristaltic Robot
,”
IEEE International Conference on Robotics and Biomimetics
(
IEEE ROBIO 2018
), Kuala Lumpur, Malaysia, Dec. 12–13, pp.
12
15
.https://www.researchgate.net/publication/328653598_Preliminary_Design_and_Performance_Test_of_Tendon-Driven_Origami-Inspired_Soft_Peristaltic_Robot
43.
Boudreaux
,
C. P.
,
Shelton
,
F. E.
, IV
,
Smith
,
B. W.
, and
Abbott
,
D. J.
,
2013
, “
Surgical Instruments and Components for Use in Sterile Environments
,” U.S. Patent No. 8,414,577.
44.
Murayama
,
Y.
, and
Vinuela
,
F.
,
2002
, “
Biodegradable Polymer Coils for Intraluminal Implants
,” U.S. Patent No. 6,423,085.
You do not currently have access to this content.