Retransfusion of a patient's own shed blood during cardiac surgery is attractive since it reduces the need for allogeneic transfusion, minimizes cost, and decreases transfusion related morbidity. Evidence suggests that lipid micro-emboli associated with the retransfusion of the shed blood are the predominant causes of the neurocognitive disorders. We have developed a novel acoustophoretic filtration system that can remove lipids from blood at clinically relevant flow rates. Unlike other acoustophoretic separation systems, this ultrasound technology works at the macroscale, and is therefore able to process larger flow rates than typical micro-electromechanical system (MEMS) scale acoustophoretic separation devices. In this work, we have first demonstrated the systematic design of the acoustic device and its optimization, followed by examining the feasibility of the device to filter lipids from the system. Then, we demonstrate the effects of the acoustic waves on the shed blood; examining hemolysis using both haptoglobin formation and lactate dehydrogenase release, as well as the potential of platelet aggregation or inflammatory cascade activation. Finally, in a porcine surgical model, we determined the potential viability of acoustic trapping as a blood filtration technology, as the animal responded to redelivered blood by increasing both systemic and mean arterial blood pressure.

References

1.
Murphy
,
G. J.
, and
Angelini
,
G. D.
,
2006
, “
Indications for Blood Transfusion in Cardiac Surgery
,”
Ann. Thorac. Surg.
,
82
(
6
), pp.
2323
2334
.
2.
Jonsson
,
H.
,
Holm
,
C.
,
Nilsson
,
A.
,
Petersson
,
F.
,
Johnsson
,
P.
, and
Laurell
,
T.
,
2004
, “
Particle Separation Using Ultrasound Can Radically Reduce Embolic Load to Brain After Cardiac Surgery
,”
Ann. Thorac. Surg.
,
78
(
5
), pp.
1572
1577
.
3.
Kincaid
,
E. H.
,
Jones
,
T. J.
,
Stump
,
D. A.
,
Brown
,
W. R.
,
Moody
,
D. M.
,
Deal
,
D. D.
, and
Hammon
,
J. W.
, Jr.
,
2000
, “
Processing Scavenged Blood With a Cell Saver Reduces Cerebral Lipid Microembolization
,”
Ann. Thorac. Surg.
,
70
(
4
), pp.
1296
1300
.
4.
Bronden
,
B.
,
Dencker
,
M.
,
Allers
,
M.
,
Plaza
,
I.
, and
Jonsson
,
H.
,
2006
, “
Differential Distribution of Lipid Microemboli After Cardiac Surgery
,”
Ann. Thorac. Surg.
,
81
(
2
), pp.
643
648
.
5.
Brooker
,
R. F.
,
Brown
,
W. R.
,
Moody
,
D. M.
,
Hammon
,
J. W.
, Jr.
,
Reboussin
,
D. M.
,
Deal
,
D. D.
,
Ghazi-Birry
,
H. S.
, and
Stump
,
D. A.
,
1998
, “
Cardiotomy Suction: A Major Source of Brain Lipid Emboli During Cardiopulmonary Bypass
,”
Ann. Thorac. Surg.
,
65
(
6
), pp.
1651
1655
.
6.
de Vries
,
A. J.
,
Gu
,
Y. J.
,
Douglas
,
Y. L.
,
Post
,
W. J.
,
Lip
,
H.
, and
van Oeveren
,
W.
,
2004
, “
Clinical Evaluation of a New Fat Removal Filter During Cardiac Surgery
,”
Eur. J. Cardiothorac. Surg.
,
25
(
2
), pp.
261
266
.
7.
Eyjolfsson
,
A.
,
Scicluna
,
S.
,
Johnsson
,
P.
,
Petersson
,
F.
, and
Jonsson
,
H.
,
2008
, “
Characterization of Lipid Particles in Shed Mediastinal Blood
,”
Ann. Thorac. Surg.
,
85
(
3
), pp.
978
981
.
8.
Dell'Amore
,
A.
,
Tripodi
,
A.
,
Cavallucci
,
A.
,
Guerrini
,
F.
,
Ronchi
,
B.
,
Zanoni
,
S.
, and
Lamarra
,
M.
,
2010
, “
Efficacy of a New Oxygenator-Integrated Fat and Leukocyte Removal Device
,”
Asian Cardiovasc. Thorac. Ann.
,
18
(
6
), pp.
546
550
.
9.
Jewell
,
A. E.
,
Akowuah
,
E. F.
,
Suvarna
,
S. K.
,
Braidley
,
P.
,
Hopkinson
,
D.
, and
Cooper
,
G.
,
2003
, “
A Prospective Randomised Comparison of Cardiotomy Suction and Cell Saver for Recycling Shed Blood During Cardiac Surgery
,”
Eur. J. Cardiothorac. Surg.
,
23
(
4
), pp.
633
636
.
10.
Petersson
,
F.
,
Nilsson
,
A.
,
Holm
,
C.
,
Jonsson
,
H.
, and
Laurell
,
T.
,
2005
, “
Continuous Separation of Lipid Particles From Erythrocytes by Means of Laminar Flow and Acoustic Standing Wave Forces
,”
Lab Chip
,
5
(
1
), pp.
20
22
.
11.
Gor'kov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid
,”
Sov. Phys. Dokl.
,
6
, pp.
773
775
.
12.
Dutra
,
B.
,
Rust
,
M.
,
Kennedy
,
D.
,
Masi
,
L.
, and
Lipkens
,
B.
,
2013
, “
Macro-Scale Acoustophoretic Separation of Lipid Particles From Red Blood Cells
,”
Proc. Meet. Acoust.
,
19
(
1
), p.
045017
.
13.
Ai
,
Y.
,
Sanders
,
C. K.
, and
Marrone
,
B. L.
,
2013
, “
Separation of Escherichia Coli Bacteria From Peripheral Blood Mononuclear Cells Using Standing Surface Acoustic Waves
,”
Anal. Chem.
,
85
(
19
), pp.
9126
9134
.
14.
Antfolk
,
M.
,
Magnusson
,
C.
,
Augustsson
,
P.
,
Lilja
,
H.
, and
Laurell
,
T.
,
2015
, “
Acoustofluidic, Label-Free Separation and Simultaneous Concentration of Rare Tumor Cells From White Blood Cells
,”
Anal. Chem.
,
87
(
18
), pp.
9322
9328
.
15.
Tenje
,
M.
,
Lundgren
,
M. N.
,
Sward-Nilsson
,
A. M.
,
Kjeldsen-Kragh
,
J.
,
Lyxe
,
L.
, and
Lenshof
,
A.
,
2015
, “
Acoustophoretic Removal of Proteins From Blood Components
,”
Biomed. Microdevices
,
17
(
5
), p.
95
.
16.
Reents
,
W.
,
Babin-Ebell
,
J.
,
Misoph
,
M. R.
,
Schwarzkopf
,
A.
, and
Elert
,
O.
,
1999
, “
Influence of Different Autotransfusion Devices on the Quality of Salvaged Blood
,”
Ann. Thorac. Surg.
,
68
(
1
), pp.
58
62
.
17.
Bortz
,
D. M.
,
Jackson
,
T. L.
,
Taylor
,
K. A.
,
Thompson
,
A. P.
, and
Younger
,
J. G.
,
2008
, “
Klebsiella Pneumoniae Flocculation Dynamics
,”
Bull. Math. Biol.
,
70
(
3
), pp.
745
768
.
18.
Chung
,
H. M.
,
Cartwright
,
M. M.
,
Bortz
,
D. M.
,
Jackson
,
T. L.
, and
Younger
,
J. G.
,
2008
, “
Dynamical System Analysis of Staphylococcus Epidermidis Bloodstream Infection
,”
Shock
,
30
(
5
), pp.
518
526
.
19.
Bracho
,
D. O.
,
Barsan
,
L.
,
Arekapudi
,
S. R.
,
Thompson
,
J. A.
,
Hen
,
J.
,
Stern
,
S. A.
, and
Younger
,
J. G.
,
2009
, “
Antibacterial Properties of an Iron-Based Hemostatic Agent In Vitro and in a Rat Wound Model
,”
Acad. Emerg. Med.
,
16
(
7
), pp.
656
660
.
20.
Yu
,
M.
,
Stott
,
S.
,
Toner
,
M.
,
Maheswaran
,
S.
, and
Haber
,
D. A.
,
2011
, “
Circulating Tumor Cells: Approaches to Isolation and Characterization
,”
J. Cell Biol.
,
192
(
3
), pp.
373
382
.
21.
Augustsson
,
P.
,
Magnusson
,
C.
,
Nordin
,
M.
,
Lilja
,
H.
, and
Laurell
,
T.
,
2012
, “
Microfluidic, Label-Free Enrichment of Prostate Cancer Cells in Blood Based on Acoustophoresis
,”
Anal. Chem.
,
84
(
18
), pp.
7954
7962
.
You do not currently have access to this content.