Endovascular techniques have many advantages but rely strongly on operator skills and experience. Robotically steerable catheters have been developed but few are clinically available. We describe here the development of an active and efficient catheter based on shape memory alloys (SMA) actuators. We first established the specifications of our device considering anatomical constraints. We then present a new method for building active SMA-based catheters. The proposed method relies on the use of a core body made of three parallel metallic beams and integrates wire-shaped SMA actuators. The complete device is encapsulated into a standard 6F catheter for safety purposes. A trial-and-error campaign comparing 70 different prototypes was conducted to determine the best dimensions of the core structure and of the SMA actuators with respect to the imposed specifications. The final prototype was tested on a silicon-based arterial model and on a 23 kg pig. During these experiments, we were able to cannulate the supra-aortic trunks and the renal arteries with different angulations and without any complication. A second major contribution of this paper is the derivation of a reliable mathematical model for predicting the bending angle of our active catheters. We first use this model to state some general qualitative rules useful for an iterative dimensional optimization. We then perform a quantitative comparison between the actual and the predicted bending angles for a set of 13 different prototypes. The relative error is less than 20% for bending angles between 100 deg and 150 deg, which is the interval of interest for our applications.

References

1.
Coghlan
,
K. M.
,
Breen
,
L. T.
,
Martin
,
Z.
,
O'Neill
,
S.
,
Madhaven
,
P.
,
Moore
,
D.
, and
Murphy
,
B. P.
,
2013
, “
An Experimental Study to Determine the Optimal Access Route for Renal Artery Interventions
,”
Eur. J. Vasc. Endovascular Surg.
,
46
(2), pp.
236
241
.
2.
Antoniou
,
G. A.
,
Riga
,
C. V.
,
Mayer
,
E. K.
,
Cheshire
,
N. J.
, and
Bicknell
,
C. D.
,
2011
, “
Clinical Applications of Robotic Technology in Vascular and Endovascular Surgery
,”
J. Vasc. Surg.
,
53
(2), pp.
493
499
.
3.
Cochennec
,
F.
,
Riga
,
C.
,
Hamady
,
M.
,
Cheshire
,
N.
, and
Bicknell
,
C.
,
2013
, “
Improved Catheter Navigation With 3D Electromagnetic Guidance
,”
J. Endovasc. Ther.
,
20
(
1
), pp.
39
47
.
4.
Duran
,
C.
,
Lumsden
,
A. B.
, and
Bismuth
,
J.
,
2014
, “
A Randomized, Controlled Animal Trial Demonstrating the Feasibility and Safety of the MagellanTM Endovascular Robotic System
,”
Ann. Vasc. Surg.
,
28
(2), pp.
470
478
.
5.
Bismuth
,
J.
,
Kashef
,
E.
,
Cheshire
,
N.
, and
Lumsden
,
A. B.
,
2011
, “
Feasibility and Safety of Remote Endovascular Catheter Navigation in a Porcine Model
,”
J. Endovasc. Ther.
,
18
(
2
), pp.
243
249
.
6.
Bismuth
,
J.
,
Duran
,
C.
,
Stankovic
,
M.
,
Gersak
,
B.
, and
Lumsden
,
A. B.
,
2013
, “
A First-in-Man Study of the Role of Flexible Robotics in Overcoming Navigation Challenges in the Iliofemoral Arteries
,”
J. Vasc. Surg.
,
57
(
2
), pp.
14S
19S
.
7.
Cochennec
,
F.
,
Kobeiter
,
H.
,
Gohel
,
M.
,
Marzelle
,
J.
,
Desgranges
,
P.
,
Allaire
,
E.
, and
Becquemin
,
J. P.
,
2015
, “
Feasibility and Safety of Renal and Visceral Target Vessel Cannulation Using Robotically Steerable Catheters During Complex Endovascular Aortic Procedures
,”
J. Endovasc. Ther.
,
22
(
2
), pp.
187
193
.
8.
Riga
,
C. V.
,
Cheshire
,
N. J. W.
,
Hamady
,
M. S.
, and
Bicknell
,
C. D.
,
2010
, “
The Role of Robotic Endovascular Catheters in Fenestrated Stent Grafting
,”
J. Vasc. Surg.
,
51
(
4
), pp.
810
819
.
9.
Riga
,
C. V.
,
Bicknell
,
C. D.
,
Hamady
,
M. S.
, and
Cheshire
,
N. J. W.
,
2011
, “
Evaluation of Robotic Endovascular Catheters for Arch Vessel Cannulation
,”
J. Vasc. Surg.
,
54
(
3
), pp.
799
809
.
10.
Riga
,
C. V.
,
Bicknell
,
C. D.
,
Hamady
,
M.
, and
Cheshire
,
N.
,
2012
, “
Tortuous Iliac Systems—A Significant Burden to Conventional Cannulation in the Visceral Segment: Is There a Role for Robotic Catheter Technology?
,”
J. Vasc. Interv. Radiol.
,
23
(
10
), pp.
1369
1375
.
11.
de Ruiter
,
Q. M. B.
,
Moll
,
F. L.
, and
van Herwaarden
,
J. A.
,
2015
, “
Current State in Tracking and Robotic Navigation Systems for Application in Endovascular Aortic Aneurysm Repair
,”
J. Vasc. Surg.
,
61
(
1
), pp.
256
264
.
12.
Shurrab
,
M.
,
Danon
,
A.
,
Lashevsky
,
I.
,
Kiss
,
A.
,
Newman
,
D.
,
Szili-Torok
,
T.
, and
Crystal
,
E.
,
2013
, “
Robotically Assisted Ablation of Atrial Fibrillation: A Systematic Review and Meta-Analysis
,”
Int. J. Cardiol.
,
169
(
3
), pp.
157
165
.
13.
Gilbert
,
H. B.
,
Hendrick
,
R. J.
, and
Webster
,
R. J.
,
2016
, “
Elastic Stability of Concentric Tube Robots: A Stability Measure and Design Test
,”
IEEE Trans. Rob.
,
32
(
1
), pp.
20
35
.
14.
Dupont
,
P. E.
,
Gosline
,
A.
,
Vasilyev
,
N. D.
, and
el Nido
,
P.
,
2012
, “Concentric Tube Robots for Minimally Invasive Surgery,”
The Hamlyn Symposium on Medical Robotics
, London, July 1–2, pp. 3–5.
15.
Kim
,
J. S.
,
Lee
,
D. Y.
, and
Kim
,
K.
,
2014
, “
Toward a Solution to the Snapping Problem in a Concentric-Tube Continuum Robot: Grooved Tubes With Anisotropy
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Hong Kong, China, May 31–June 7, pp.
5871
5876
.
16.
Liu
,
J.
,
Wang
,
Y.
,
Zhao
,
D.
,
Zhang
,
C.
,
Chen
,
H.
, and
Li
,
D.
,
2014
, “
Design and Fabrication of an IPMC-Embedded Tube for Minimally Invasive Surgery Applications
,”
Proc. SPIE
,
9056
, pp. 90563K.
17.
Shoa
,
T.
,
Madden
,
J. D.
,
Fekri
,
N.
,
Munce
,
N. R.
, and
Yang
,
V. X.
,
2008
, “
Conducting Polymer Based Active Catheter for Minimally Invasive Interventions Inside Arteries
,”
30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(
EMBS
), Vancouver, BC, Canada, Aug. 20–25, pp.
2063
2066
.
18.
Ikuta
,
K.
,
Yajima
,
D.
,
Ichikawa
,
H.
, and
Katsuya
,
S.
,
2007
, “
Hydrodynamic Active Catheter With Multi Degrees of Freedom Motion
,”
World Congress on Medical Physics and Biomedical Engineering
, Seoul, Korea, Aug. 27–Sept. 1, pp.
3091
3094
.
19.
Ikeuchi
,
M.
, and
Ikuta
,
K.
,
2008
, “
‘Membrane Micro Emboss Following Excimer Laser Ablation (MeME-X) Process’ for Pressure-Driven Micro Active Catheter
,”
21st IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Wuhan, China, Jan. 13–17, pp.
62
65
.
20.
Huber
,
J. E.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
,
1997
, “
The Selection of Mechanical Actuators Based on Performance Indices
,”
Proc. R. Soc. London A
,
453
(1965), pp.
2185
2205
.
21.
Chang
,
J. K.
,
Chung
,
S.
,
Lee
,
Y.
,
Park
,
J.
,
Lee
,
S. K.
,
Yang
,
S. K.
,
Moon
,
S. Y.
,
Tschepe
,
J.
,
Chee
,
Y.
, and
Han
,
D. C.
,
2002
, “
Development of Endovascular Microtools
,”
J. Micromech. Microeng.
,
12
(6), p.
824
.
22.
Mineta
,
T.
,
Mitsui
,
T.
,
Watanabe
,
Y.
,
Kobayashi
,
S.
,
Haga
,
Y.
, and
Esashi
,
M.
,
2001
, “
Batch Fabricated Flat Meandering Shape Memory Alloy Actuator for Active Catheter
,”
Sens. Actuators A
,
88
(2), pp.
112
120
.
23.
Namazu
,
T.
,
Komatsubara
,
M.
,
Nagasawa
,
H.
,
Miki
,
T.
,
Tsurui
,
T.
, and
Inoue
,
S.
,
2011
, “
Titanium-Nickel Shape Memory Alloy Spring Actuator for Forward-Looking Active Catheter
,”
J. Metall.
,
2011
, p.
685429
.
24.
Haga
,
Y.
,
Esashi
,
M.
, and
Maeda
,
S.
,
2000
, “
Bending, Torsional and Extending Active Catheter Assembled Using Electroplating
,”
13th Annual International Conference on Micro Electro Mechanical Systems
(
MEMS
), Miyazaki, Japan, Jan. 23–27, pp.
181
186
.
25.
Lim
,
G.
,
Minami
,
K.
, and
Sugihara
,
M.
,
1995
, “
Active Catheter With Multi-Link Structure Based on Silicon Micromachining
,”
IEEE Micro Electro Mechanical Systems
(
MEMS
), Amsterdam, The Netherlands, Jan. 29–Feb. 2, pp. 116–121.
26.
Fu
,
Y.
,
L,i
,
X.
,
Wang
,
S.
,
Liu
,
H.
, and
Liang
,
Z.
,
2008
, “
Research on the Axis Shape of an Active Catheter
,”
Int. J. Med. Rob.
,
4
(1), pp.
69
76
.
27.
Haga
,
Y.
,
Tanahashi
,
Y.
, and
Esashi
,
M.
,
1998
, “
Small Diameter Active Catheter Using Shape Memory Alloy
,”
11th Annual International Workshop on Micro Electro Mechanical Systems
(
MEMS
), Heidelberg, Germany, Jan. 25–29, pp.
419
424
.
28.
Fukuda
,
T.
,
Guo
,
S.
, and
Kosuge
,
K.
,
1994
, “
Micro Active Catheter System With Multi Degrees of Freedom
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), San Diego, CA, May 8–13, pp.
2290
2295
.
29.
Mizuno
,
S.
,
Nakajima
,
M.
,
Yasuda
,
K.
,
Kobayashi
,
M.
,
Mukai
,
H.
,
Hirano
,
S.
, and
Kawai
,
K.
,
1994
, “
Shape Memory Alloy Catheter System for Peroral Pancreatoscopy Using an Ultrathin-Caliber Endoscope
,”
Endoscopy
,
26
(8), pp.
676
680
.
30.
Takizawa
,
H.
,
Tosaka
,
H.
,
Ohta
,
R.
,
Kaneko
,
S.
, and
Ueda
,
Y.
,
1999
, “
Development of a Microfine Active Bending Catheter Equipped With MIF Tactile Sensors
,”
12th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS
), Orlando, FL, Jan 17–21, pp.
412
417
.
31.
Szewczyk
,
J.
,
Marchandise
,
E.
,
Flaud
,
P.
,
Royon
,
L.
, and
Blanc
,
R.
,
2011
, “
Active Catheters for Neuroradiology
,”
J. Rob. Mechatronics
,
23
(1), pp.
105
115
.
32.
Clogenson
,
H. C. M.
,
Simonetto
,
A.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Design Optimization of a Deflectable Guidewire
,”
Med. Eng. Phys.
,
37
(1), pp.
138
144
.
33.
Wilbring
,
M.
,
Rehm
,
M.
,
Ghazy
,
T.
,
Amler
,
M.
,
Matschke
,
K.
, and
Kappert
,
U.
,
2016
, “
Aortic Arch Mapping by Computed Tomography for Actual Anatomic Studies in Times of Emerging Endovascular Therapies
,”
Ann. Vasc. Surg.
,
30
, pp.
181
191
.
34.
Vučurević
,
G.
,
Marinković
,
S.
,
Puškaš
,
L.
,
Kovačević
,
I.
,
Tanasković
,
S.
,
Radak
,
D.
, and
Ilić
,
A.
,
2013
, “
Anatomy and Radiology of the Variations of Aortic Arch Branches in 1,266 Patients
,”
Folia Morphol.
,
72
(2), pp.
113
122
.
35.
Demertzis
,
S.
,
Hurni
,
S.
,
Stalder
,
M.
,
Gahl
,
B.
,
Herrmann
,
G.
, and
Van den Berg
,
J.
,
2010
, “
Aortic Arch Morphometry in Living Humans
,”
J. Anat.
,
217
(5), pp.
588
596
.
36.
Chiu
,
P.
,
Lee
,
H. P.
,
Venkatesh
,
S. K.
, and
Ho
,
P.
,
2013
, “
Anatomical Characteristics of the Thoracic Aortic Arch in an Asian Population
,”
Asian Cardiovasc. Thorac. Ann.
,
21
(
2
), pp.
151
159
.
37.
Finlay
,
A.
,
Johnson
,
M.
, and
Forbes
,
T. L.
,
2012
, “
Surgically Relevant Aortic Arch Mapping Using Computed Tomography
,”
Ann. Vasc. Surg.
,
26
(4), pp.
483
490
.
38.
Shin
,
I. Y.
,
Chung
,
Y. G.
,
Shin
,
W. H.
,
Im
,
S. B.
,
Hwang
,
S. C.
, and
Kim
,
B.-T.
,
2008
, “
A Morphometric Study on Cadaveric Aortic Arch and Its Major Branches in 25 Korean Adults: The Perspective of Endovascular Surgery
,”
J. Korean Neurosurg. Soc.
,
44
(2), pp.
78
83
.
39.
Noordergraaf
,
A.
,
Verdouw
,
D.
, and
Boom
,
H. B.
,
1963
, “
The Use of an Analog Computer in a Circulation Model
,”
Prog. Cardiovasc. Dis.
,
5
(5), pp.
419
439
.
40.
Kahraman
,
H.
,
Ozaydin
,
M.
,
Varol
,
E.
,
Aslan
,
S. M.
,
Dogan
,
A.
,
Altinbas
,
A.
,
Demir
,
M.
,
Gedikli
,
O.
,
Acar
,
G.
, and
Ergene
,
O.
,
2006
, “
The Diameters of the Aorta and Its Major Branches in Patients With Isolated Coronary Artery Ectasia
,”
Texas Heart Inst. J.
,
33
(4), pp.
463
468
.
41.
Turba
,
U. C.
,
Uflacker
,
R.
,
Bozlar
,
U.
, and
Hagspiel
,
K. D.
,
2009
, “
Normal Renal Arterial Anatomy Assessed by Multidetector CT Angiography: Are There Differences Between Men and Women?
,”
Clin. Anat.
,
22
(2), pp.
236
242
.
42.
Kaufman
,
J.
, and
Lee
,
M.
,
2004
,
Vascular and Interventional Radiology: The Requisites
,
Elsevier
, Amsterdam, The Netherlands.
43.
Rogers
,
I. S.
,
Massaro
,
J. M.
,
Truong
,
Q. A.
,
Mahabadi
,
A. A.
,
Kriegel
,
M. F.
,
Fox
,
C. S.
,
Thanassoulis
,
G.
,
Isselbacher
,
E. M.
,
Hoffmann
,
U.
, and
O'Donnell
,
C. J.
,
2013
, “
Distribution, Determinants, and Normal Reference Values of Thoracic and Abdominal Aortic Diameters by Computed Tomography (From the Framingham Heart Study)
,”
Am. J. Cardiol.
,
111
(10), pp.
1510
1516
.
44.
Pedersen
,
O. M.
,
Aslaksen
,
A.
, and
Vik-Mo
,
H.
,
1993
, “
Ultrasound Measurement of the Luminal Diameter of the Abdominal Aorta and Iliac Arteries in Patients Without Vascular Disease
,”
J. Vasc. Surg.
,
17
(3), pp.
596
601
.
45.
Shah
,
P. M.
,
Scarton
,
H. A.
, and
Tsapogas
,
M. J.
,
1978
, “
Geometric Anatomy of the Aortic–Common Iliac Bifurcation
,”
J. Anat.
,
126
(3), pp.
451
458
.
46.
Silveira
,
L. A.
,
da Silveira
,
F. B. C.
, and
Fazan
,
V. P. S.
,
2009
, “
Arterial Diameter of the Celiac Trunk and Its Branches. Anatomical Study
,”
Acta Cir. Bras.
,
24
(
1
), pp.
43
47
.
47.
Malnar
,
D.
,
Klasan
,
G. S.
,
Miletić
,
D.
,
Bajek
,
S.
,
Vranić
,
T. S.
,
Arbanas
,
J.
,
Bobinac
,
D.
, and
Coklo
,
M.
,
2010
, “
Properties of the Celiac Trunk–Anatomical Study
,”
Coll. Antropol.
,
34
(3), pp.
917
921
.
48.
Clogenson
,
H. C. M.
,
van Lith
,
J. Y.
,
Dankelman
,
J.
,
Melzer
,
A.
, and
van den Dobbelsteen
,
J. J.
,
2015
, “
Multi-Selective Catheter for MR-Guided Endovascular Interventions
,”
Med. Eng. Phys.
,
37
(
7
), pp.
623
630
.
You do not currently have access to this content.