Ultrasonic longitudinal displacements, delivered to the distal tips of small diameter wire waveguides, are known to be capable of disrupting complicated atherosclerotic plaques during vascular interventions. These ultrasonic displacements can disrupt plaques not only by direct contact ablation but also by pressure waves, associated cavitation, and acoustic streaming developed in the surrounding blood and tissue cavities. The pressure waves developed within the arterial lumen appear to play a major role but are complex to predict as they are determined by the distal tip output of the wire waveguide (both displacement and frequency), the geometric features of the waveguide tip, and the effects of biological fluid interactions. This work describes a numerical linear acoustic fluid-structure model of an ultrasonic wire waveguide and the blood surrounding the distal tip. The model predicts a standing wave structure in the wire waveguide, including stresses and displacements, and requires the incorporation of a damping constant. The effects on waveguide response of including an enlarged ball tip at the distal end of the waveguide, designed to enhance cavitation and surface contact area, are investigated, in addition to the effects of the surrounding blood on the resonant response of the waveguide. The model also predicts the pressures developed in the acoustic fluid field surrounding the ultrasonic vibrating waveguide tip and can predict the combinations of displacements, frequencies, and waveguide geometries associated with cavitation, an important event in the disruption of plaque. The model has been validated against experimental displacement measurements with a purpose built 23.5 kHz nickel-titanium wire waveguide apparatus and against experimental pressure measurements from the literature.

1.
2003,
Heart Disease and Stroke Statistics—Update
,
American Heart Association
,
Dallas, TX
.
2.
William
,
N. G.
,
Chen
,
W.-H.
,
Lee
,
P.-Y.
, and
Lau
,
C.-P.
, 2003, “
Initial Experience and Safety in the Treatment of Chronic Total Coronary Occlusions With a New Optical Coherent Reflectometry-Guided Radiofrequency Ablation Guidewire
,”
Am. J. Cardiol.
0002-9149,
92
(
6
), pp.
732
734
.
3.
Harmann
,
A.
, and
Kaltenbach
,
M.
, 1994,
Current Review of Interventional Cardiology
,
E. J.
Topol
and
P. W.
Serruys
, eds.,
Current Medicine
,
Philadelphia
.
4.
Sobbe
,
A.
,
Stumpff
,
U.
,
Trubenstein
,
G.
,
Figge
,
H.
, and
Kozuschek
,
W.
, 1974, “
Die Ultraschall-Auflosung von Thromben
,”
Klin. Wochenschr.
0023-2173,
52
, pp.
1117
1121
.
5.
Siegel
,
R. J.
,
Fishbein
,
M. C.
,
Forrester
,
J.
,
Moore
,
K.
,
DeCastro
,
E.
,
Daykhovsky
,
Z.
, and
Don Michael
,
T. A.
, 1988, “
Ultrasonic Plaque Ablation: A New Method for Recanalisation of Partially or Totally Occluded Arteries
,”
Circulation
0009-7322,
78
, pp.
1443
1448
.
6.
Rosenschien
,
U.
,
Bernstein
,
J.
,
Di Segni
,
E.
,
Kaplinsky
,
E.
,
Bernheim
,
J.
, and
Rozenszain
,
L. A.
, 1990, “
Experimental Ultrasonic Angioplasty: Disruption of Atherosclerotic Plaques and Thrombi in vitro and Arterial Recanalisation in vivo
,”
J. Am. Coll. Cardiol.
0735-1097,
15
, pp.
711
717
.
7.
Melzi
,
G.
,
Cosgrave
,
John
,
Biondi-Zoccai
,
Giuseppe. L.
,
Airoldi
,
Flavio
,
Michev
,
Lassen
,
Chieffo
,
Alaide
,
Sangiorgi
,
Giuseppe M.
,
Montorfano
,
Matteo
,
Carlino
,
Mauro
, and
Colombo
,
Antonio
, 2006, “
Coronay Artery Disease. A Novel Approach to Chronic Total Occlusions: The Crosser System
,”
Catheterization and Cardiovascular Interventions
,
68
, pp.
29
35
.
8.
Grubbe
,
E.
,
Sütsch
,
Gabor
,
Lim
,
Victor Y.
,
Buellesfeld
,
Lutz
,
Iakovou
,
Ioannis
,
Vitrella
,
Giancarlo
, and
Colombo
,
Antonio
, 2006, “
High Frequency Mechanical Vibration to Recanalize Chronic Total Occlusions After Failure to Cross With Conventional Guidewires
,”
J. Invasive Cardiol
,
18
,
85
91
.
9.
Joye
,
J.
, 2006, “
Successful CTO Recanalization
,” Endovascular Today
5
(
3
), pp.
72
77
.
10.
Perkins
,
J. P.
, 1986, “
Power Ultrasonic Equipment: Practice and Application
,” based on a paper presented at the
Sonochemistry Symposium
, Annual Chemical Congress,
Warwick University
,
UK
, Apr. 8–11.
11.
Atar
,
S.
,
Luo
,
H.
,
Nagai
,
T.
, and
Siegel
,
R. J.
, 1999, “
Ultrasonic Thrombolysis: Catheter-Delivered and Transcutaneous Applications
,”
Eur. J. Ultrasound
0929-8266,
9
, pp.
39
54
.
12.
Yock
,
P. G.
, and
Fitzgerald
,
P. J.
, 1997, “
Catheter-Based Ultrasound Thrombolysis: Shake, Rattle and Reperfuse
,”
Circulation
0009-7322,
95
, pp.
1360
1362
.
13.
Makin
,
R. S.
, and
Everbach
,
E. C.
, 1996, “
Measurement of Pressure and Assessment of Cavitation for a 22.5 kHz Intra-Arterial Angioplasty Device
,”
J. Acoust. Soc. Am.
0001-4966,
100
(
3
), pp.
1855
1864
.
14.
Nyborg
,
W. L.
, 1996,
Ultrasound Angioplasty. Developments in Cardiovascular Medicine
,
R. J.
Siegel
, ed.,
Kluwer Academic
,
Dordrecht
, Chap. 1.
15.
Gavin
,
Graham P.
,
McGuinness
,
Garrett B.
,
Dolan
,
Finbar
, and
Hashmi
,
M. S. J.
, 2007, “
Performance Characteristics of a Therapeutic Ultrasound Wire Waveguide Apparatus
,”
Int. J. Mech. Sci.
0020-7403,
49
(
3)
, pp.
298
305
.
16.
Gavin
,
G. P.
,
McGuinness
,
G. B.
,
Dolan
,
F.
, and
Hashmi
,
M. S. J.
, 2005, “
Development and Performance Characteristics of an Ultrasound Angioplasty Device
,”
Proceedings of 11th Annual Conference BioEng. R. Accad. Med.
,
Dublin, Ireland
, p.
78
.
17.
Steidel
,
R. F.
, Jr.
, 1989,
An Introduction to Mechanical Vibrations
, 3rd ed.,
Wiley
,
New York
, Chap. 13.
18.
Burdic
,
W. S.
, 1991,
Underwater Acoustic System Analysis
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
ANSYS© Help Files, ANSYS© MULTIPHYSICS, Version 8.1.
You do not currently have access to this content.