Abstract

The objective is to quantify the guidewire (diameter of 0.35mm) flow-obstruction effect in the in vitro model coronary stenoses in relation to trans-stenotic pressure drop, Δp, fractional flow reserve (gFFR; “g” represents FFR measurement with guidewire insertion) and coronary flow reserve (gCFR) for steady and pulsatile physiological flows. The sensor tipped pressure or flow measuring guidewire insertion through stenotic lumen increases the trans-stenotic pressure drop or reduces the pharmacologically induced hyperemic flow in the coronary arteries with plaques. These hemodynamic changes may cause error in true FFR and CFR measurements, especially for intermediate coronary stenosis. To quantify guidewire flow-obstruction effect, simultaneous measurements of trans-stenotic pressures and flow were performed by two methods: (a) guidewire based measurements (gCFR and gFFR by inserting sensor tipped guidewire) and (b) true physiological measurements (CFR by in-line Doppler flow cuff and FFR by the radially drilled pressure ports in three epicardial coronary stenotic test sections, postangioplasty, intermediate, and preangioplasty). The diagnostic parameters measured before guidewire insertion (CFR and FFR) and during guidewire insertion (gCFR and gFFR) were validated numerically and correlated with the new diagnostic parameter “lesion flow coefficient (LFC).” There was significant flow reduction with increased trans-stenotic pressure drop due to guidewire insertion. The FFR-gFFR and CFR-gCFR correlations were FFR=0.92×gFFR+0.097(R2=0.99) and CFR=0.91×gCFR+0.44(R2=0.99), respectively, where gCFR is reported from clinical pressure-flow data. Similar highly regressed (R2>0.9) correlations were obtained for LFC and gLFC with flow ratios and pressure ratios. There was significant difference between steady and pulsatile pressure drops for the same mean flow with and without guidewire insertion. The trans-stenotic hemodynamics was altered due to guidewire insertion. The true FFR and CFR were underestimated because of guidewire insertion. Hence, the FFR-gFFR and CFR-gCFR correlations can be used to find out true FFR and CFR from clinically measured values (i.e., gFFR and gCFR). In addition, the gLFC-gCFR and gLFC-gFFR were correlated significantly for post- and preangioplasty conditions.

References

1.
Pijls
,
N. H.
,
De Bruyne
,
B.
,
Peels
,
K.
,
Van der Voort
,
P. H.
,
Bonnier
,
H. J.
,
Bartunek
,
J.
, and
Koolen
,
J. J.
, 1996, “
Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses
,”
N. Engl. J. Med.
0028-4793,
334
(
26
), pp.
1703
1708
.
2.
Gould
,
K. L.
,
Lipscomb
,
K.
, and
Hamilton
,
G. W.
, 1974, “
Physiologic Basis for Assessing Critical Coronary Stenosis. Instantaneous Flow Response and Regional Distribution During Coronary Hyperemia as Measures of Coronary Flow Reserve
,”
Am. J. Cardiol.
0002-9149,
33
(
1
), pp.
87
94
.
3.
Siebes
,
M.
,
Verhoeff
,
B. J.
,
Meuwissen
,
M.
,
de Winter
,
R. J.
,
Spaan
,
J. A.
, and
Piek
,
J. J.
, 2004, “
Single-Wire Pressure and Flow Velocity Measurement to Quantify Coronary Stenosis Hemodynamics and Effects of Percutaneous Interventions
,”
Circulation
0009-7322,
109
(
6
), pp.
756
762
.
4.
Pijls
,
N. H.
,
Van Gelder
,
B.
,
Van der Voort
,
P.
,
Peels
,
K.
,
Bracke
,
F.
,
Bonnier
,
H. J.
, and
el Gamal
,
M. I.
, 1995, “
Fractional Flow Reserve. A Useful Index to Evaluate the Influence of an Epicardial Coronary Stenosis on Myocardial Blood Flow
,”
Circulation
0009-7322,
92
(
11
), pp.
3183
3193
.
5.
Pijls
,
N. H.
, and
De Bruyne
,
B.
, 1998, “
Coronary Pressure Measurement and Fractional Flow Reserve
,”
Heart
1355-6037,
80
(
6
), pp.
539
542
.
6.
Wilson
,
R. F.
,
Johnson
,
M. R.
,
Marcus
,
M. L.
,
Alyward
,
P. E.
,
Skorton
,
D. J.
,
Collins
,
S.
, and
White
,
C. W.
, 1988, “
The Effect of Coronary Angioplasty on Coronary Flow Reserve
,”
Circulation
0009-7322,
77
(
4
), pp.
873
885
.
7.
Anderson
,
H. V.
,
Roubin
,
G. S.
,
Leimgruber
,
P. P
,
Cox
,
W. R.
,
Douglas
,
J. S.
,
King
,
S. B.
, and
Gruentzig
,
A. R.
, 1986, “
Measurement of Transstenotic Pressure Gradient During Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
0009-7322,
73
(
6
), pp.
1223
1230
.
8.
De Bruyne
,
B.
,
Pijls
,
N. H.
,
Paulus
,
W. J.
,
Vantrimpont
,
P. J.
,
Sys
,
S. U.
, and
Heyndrickx
,
G. R.
, 1993, “
Transstenotic Coronary Pressure Gradient Measurement in Humans: In Vitro and In Vivo Evaluation of a New Pressure Monitoring Angioplasty Guide Wire
,”
J. Am. Coll. Cardiol.
0735-1097,
22
(
1
), pp.
119
126
.
9.
Ganz
,
P.
,
Harrington
,
D. P.
,
Gaspar
,
J.
, and
Barry
,
W. H.
, 1983, “
Phasic Pressure Gradients Across Coronary and Renal Artery Stenoses in Humans
,”
Am. Heart J.
0002-8703,
106
(
6
), pp.
1399
1406
.
10.
Doucette
,
J. W.
,
Corl
,
P. D.
,
Payne
,
H.
,
Flynn
,
A. E.
,
Goto
,
M.
,
Nassi
,
M.
, and
Segal
,
J.
, 1992, “
Validation of a Doppler Guide Wire for Intravascular Measurement of Coronary Artery Flow Velocity
,”
Circulation
0009-7322,
85
(
5
), pp.
1899
1911
.
11.
Back
,
L. H.
,
Kwack
,
E. Y.
, and
Back
,
M. R.
, 1996, “
Flow Rate-Pressure Drop Relation in Coronary Angioplasty: Catheter Obstruction Effect
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
1
), pp.
83
89
.
12.
Emanuelsson
,
H.
,
Dohnal
,
M.
,
Lamm
,
C.
, and
Tenerz
,
L.
, 1991, “
Initial Experiences with a Miniaturized Pressure Transducer During Coronary Angioplasty
,”
Cathet Cardiovasc. Diagn.
0098-6569,
24
(
2
), pp.
137
143
.
13.
Back
,
L. H.
, 1994, “
Estimated Mean Flow Resistance Increase During Coronary Artery Catheterization
,”
J. Biomech.
0021-9290,
27
(
2
), pp.
169
175
.
14.
Jenni
,
R.
,
Buchi
,
M.
,
Zweifel
,
H. J.
, and
Ritter
,
M.
, 1998, “
Impact of Doppler Guidewire Size and Flow Rates on Intravascular Velocity Profiles
,”
Cathet Cardiovasc. Diagn.
0098-6569,
45
(
1
), pp.
96
100
.
15.
Pijls
,
N. H. J.
, 2003, “
Is It Time to Measure Fractional Flow Reserve in All Patients?
,”
J. Am. Coll. Cardiol.
0735-1097,
41
(
7
), pp.
1122
1124
.
16.
Banerjee
,
R. K.
,
Sinha Roy
,
A.
,
Back
,
L. H.
,
Back
,
M. R.
,
Khoury
,
S. F.
, and
Millard
,
R. W.
, 2007, “
Characterizing Momentum Change and Viscous Loss of a Hemodynamic Endpoint in Assessment of Coronary Lesions
,”
J. Biomech.
0021-9290,
40
(
3
), pp.
652
663
.
17.
Cho
,
Y. I.
,
Back
,
L. H.
,
Crawford
,
D. W.
, and
Cuffel
,
R. F.
, 1983, “
Experimental Study of Pulsatile and Steady Flow Through a Smooth Tube and an Atherosclerotic Coronary Artery Casting of Man
,”
J. Biomech.
0021-9290,
16
(
11
), pp.
933
946
.
18.
Brookshier
,
K. A.
, and
Tarbell
,
J. M.
, 1993, “
Evaluation of a Transparent Blood Analog Fluid: Aqueous Xanthan Gum/Glycerin
,”
Biorheology
0006-355X,
30
(
2
), pp.
107
116
.
19.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, 1991, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
0006-355X,
28
(
3–4
), pp.
241
262
.
20.
Banerjee
,
R. K.
,
Back
,
L. H.
, and
Back
,
M. R.
, 2003, “
Effects of Diagnostic Guidewire Catheter Presence on Translesional Hemodynamic Measurements Across Significant Coronary Artery Stenoses
,”
Biorheology
0006-355X,
40
(
6
), pp.
613
635
.
21.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
, 2003, “
Physiological Flow Analysis in Significant Human Coronary Artery Stenoses
,”
Biorheology
0006-355X,
40
(
4
), pp.
451
476
.
22.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
, 2000, “
Physiological Flow Simulation in Residual Human Stenoses After Coronary Angioplasty
,”
ASME J. Biomech. Eng.
0148-0731,
122
(
4
), pp.
310
320
.
23.
Young
,
D. F.
, and
Tsai
,
F. Y.
, 1973, “
Flow Characteristics in Models of Arterial Stenoses-I Steady Flow; II Unsteady Flow
,”
J. Biomech.
0021-9290,
6
(
4
), pp.
395
410
;
Young
,
D. F.
, and
Tsai
,
F. Y.
, 1973,
J. Biomech.
0021-9290,
6
(
5
), pp.
547
559
.
24.
Gould
,
K. L.
, 1988, “
Identifying and Measuring Severity of Coronary Artery Stenosis. Quantitative Coronary Arteriography and Positron Emission Tomography
,”
Circulation
0009-7322,
78
(
2
), pp.
237
245
.
25.
Sinha Roy
,
A.
,
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
,
Khoury
,
S.
, and
Millard
,
R. W.
, 2005, “
Delineating the Guide-Wire Flow Obstruction Effect in Assessment of Fractional Flow Reserve and Coronary Flow Reserve Measurements
,”
Am. J. Physiol. Heart Circ. Physiol.
0363-6135,
289
(
1
), pp.
H392
H397
.
26.
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
, 1984, “
Dynamic Mechanisms in Human Coronary Stenosis
,”
Circulation
0009-7322,
70
(
6
), pp.
917
922
.
27.
Takayama
,
T.
, and
Hodgson
,
J. M.
, 2001, “
Prediction of the Physiologic Severity of Coronary Lesions Using 3D IVUS: Validation by Direct Coronary Pressure Measurements
,”
Catheter Cardiovasc. Interv.
,
53
(
1
), pp.
48
55
.
28.
Pijls
,
N. H. J.
, and
De Bruyne
,
B.
, 2000,
Coronary Pressure
, 2nd ed.,
Kluwer Academic
,
Dordrecht
.
29.
Poullis
,
M.
, 1999, “
Coronary Pressure Measurements: Catheter Induced Errors
,” Letters to the Editor,
Heart
1355-6037,
82
(
5
), pp.
644
645
.
30.
Kern
,
M. J.
, 2000, “
Coronary Physiology Revisited: Practical Insights from the Cardiac Catheterization Laboratory
,”
Circulation
0009-7322,
101
(
11
), pp.
1344
1351
.
31.
Pijls
,
N. H.
,
Kern
,
M. J.
,
Yock
,
P. G.
, and
De Bruyne
,
B.
, 2000, “
Practice and Potential Pitfalls of Coronary Pressure Measurement
,”
Catheter Cardiovasc. Interv.
,
49
(
1
), pp.
1
16
.
32.
Legalery
,
P.
,
Seronde
,
M.
,
Meneveau
,
N.
,
Schiele
,
F.
, and
Bassand
,
J. P.
, 2003, “
Measuring Pressure-Derived Fractional Flow Reserve Through Four French Diagnostic Catheters
,”
Am. J. Cardiol.
0002-9149,
91
(
9
), pp.
1075
1078
.
33.
Patil
,
C. V.
, and
Beyar
,
R.
, 2000, “
Intermediate Coronary Artery Stenosis: Evidence-Based Decisions in Interventions to Avoid the Oculostenotic Reflex
,”
Int. J. Cardiovasc Intervent
,
3
(
4
), pp.
195
206
.
34.
Ruiz-Salmeron
,
R. J.
,
Goicolea
,
J.
,
Sanmartin
,
M.
,
Mantilla
,
R.
,
Sterling
,
J.
, and
Romeo
,
D.
, 2002, “
Simultaneous Intracoronary Pressure and Doppler Guidewires to Assess Coronary Stenosis: If One is Enough, Are Two Too Much?
,”
Catheter Cardiovasc. Interv.
,
55
(
2
), pp.
255
259
.
35.
Heller
,
L. I.
,
Cates
,
C.
,
Popma
,
J.
,
Deckelbaum
,
L. I.
,
Joye
,
J. D.
,
Dahlberg
,
S. T.
,
Villegas
,
B. J.
,
Arnold
,
A.
,
Kipperman
,
R.
,
Grinstead
,
W. C.
,
Balcom
,
S.
,
Ma
,
Y.
,
Cleman
,
M.
,
Steingart
,
R. M.
, and
Leppo
,
J. A.
, 1997, “
Intracoronary Doppler Assessment of Moderate Coronary Artery Disease: Comparison with 201Tl Imaging and Coronary Angiography. FACTS Study Group
,”
Circulation
0009-7322,
96
(
2
), pp.
484
490
.
36.
Miller
,
D. D.
,
Donohue
,
T. J.
,
Younis
,
L. T.
,
Bach
,
R. G.
,
Aguirre
,
F. V.
,
Wittry
,
M. D.
,
Goodgold
,
H. M.
,
Chaitman
,
B. R.
, and
Kern
,
M. J.
, 1994, “
Correlation of Pharmacological 99mTc-Sestamibi Myocardial Perfusion Imaging with Poststenotic Coronary Flow Reserve in Patients With Angiographically Intermediate Coronary Artery Stenoses
,”
Circulation
0009-7322,
89
(
5
), pp.
2150
2160
.
37.
De Bruyne
,
B.
,
Bartunek
,
J.
,
Sys
,
S. U.
, and
Heyndrickx
,
G. R.
, 1995, “
Relation Between Myocardial Fractional Flow Reserve Calculated from Coronary Pressure Measurements and Exercise-Induced Myocardial Ischemia
,”
Circulation
0009-7322,
92
(
1
), pp.
39
46
.
38.
Bartunek
,
J.
,
Van Schuerbeeck
,
E.
, and
De Bruyne
,
B.
, 1997, “
Comparison of Exercise Electrocardiography and Dobutamine Echocardiography with Invasively Assessed Myocardial Fractional Flow Reserve in Evaluation of Severity of Coronary Arterial Narrowing
,”
Am. J. Cardiol.
0002-9149,
79
(
4
), pp.
478
481
.
You do not currently have access to this content.