Abstract

This paper illustrates the design and testing of a lower limb exoskeleton for walking assistance. First, the biomechanics of the human knee and ankle joints during walking and the strategy of energy recycling and releasing are introduced. Next, the hardware design of the exoskeleton is described. The exoskeleton is primarily composed of a waist module, a knee module, and an ankle module. Two clutch mechanisms are designed for one-way motion transmission, and an energy storage spring is designed to store the energy recycled from the human knee motion. Additionally, the modeling of the human-exoskeleton system is presented. Finally, experiments are conducted to verify the effectiveness of the developed exoskeleton. The experimental results demonstrate that the exoskeleton has the potential to recycle the negative work from the wearer’s knee flexion during the late stance phase and knee extension during the swing phase to assist the wearer’s ankle plantarflexion during the stance phase. During a gait cycle, reductions of 11.6% and 15.6% of the average muscle activities of the gastrocnemius and soleus are observed, respectively. In addition, the peak gastrocnemius and soleus activities during the push-off stage are reduced by 16.9% and 42.6%, respectively.

References

1.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2002
, “
Biomechanics and Muscle Coordination of Human Walking: Part I: Introduction to Concepts, Power Transfer, Dynamics and Simulations
,”
Gait Posture
,
16
(
3
), pp.
215
232
.
2.
Pratt
,
J. E.
,
Krupp
,
B. T.
,
Morse
,
C. J.
, and
Collins
,
S. H.
,
2004
, “
The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
New Orleans, LA
,
Apr. 26–May 1
, pp.
2430
2435
.
3.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Li
,
Y.
, and
Qian
,
J.
,
2021
, “
Development of Robotic Ankle–Foot Orthosis With Series Elastic Actuator and Magneto-Rheological Brake
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011002
.
4.
Wang
,
T.
,
Olivoni
,
E.
,
Spyrakos-Papastavridis
,
E.
,
O'Connor
,
R. J.
, and
Dai
,
J. S.
,
2022
, “
Novel Design of a Rotation Center Auto-Matched Ankle Rehabilitation Exoskeleton With Decoupled Control Capacity
,”
ASME J. Mech. Des.
,
144
(
5
), p.
053301
.
5.
Shen
,
Z.
,
Garry
,
A.
, and
Lei
,
C.
,
2018
, “
An Integrated Type and Dimensional Synthesis Method to Design One Degree-of-Freedom Planar Linkages With Only Revolute Joints for Exoskeletons
,”
ASME J. Mech. Des.
,
140
(
9
), p.
092302
.
6.
Jimenez
,
G. R.
,
Salgado
,
D. R.
,
Alonso
,
F. J.
, and
Castillo
,
J. D.
,
2018
, “
A New Stance Control Knee Orthosis Using a Self-Locking Mechanism Based on a Planetary Gear Train
,”
ASME J. Mech. Des.
,
141
(
6
), p.
065001
.
7.
Chen
,
B.
,
Zi
,
B.
,
Wang
,
Z.
,
Qin
,
L.
, and
Liao
,
W. H.
,
2019
, “
Knee Exoskeletons for Gait Rehabilitation and Human Performance Augmentation: A State-of-the-Art
,”
Mech. Mach. Theory
,
134
, pp.
499
511
.
8.
Malcolm
,
P.
,
Derave
,
W.
,
Galle
,
S.
, and
De Clercq
,
D.
,
2013
, “
A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking
,”
PLoS One
,
8
(
2
), p.
e56137
.
9.
Liu
,
J.
,
Xiong
,
C.
, and
Fu
,
C.
,
2019
, “
An Ankle Exoskeleton Using a Lightweight Motor to Create High Power Assistance for Push-Off
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041001
.
10.
Mooney
,
L. M.
, and
Herr
,
H. M.
,
2016
, “
Biomechanical Walking Mechanisms Underlying the Metabolic Reduction Caused by an Autonomous Exoskeleton
,”
J. NeuroEng. Rehabil.
,
13
(
1
), pp.
1
12
.
11.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
144
158
.
12.
Fattah
,
A.
, and
Agrawal
,
S. K.
,
2005
, “
On the Design of a Passive Orthosis to Gravity Balance Human Legs
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
802
808
.
13.
Sawicki
,
G. S.
,
Lewis
,
C. L.
, and
Ferris
,
D. P.
,
2009
, “
It Pays to Have a Spring in Your Step
,”
Exerc. Sport Sci. Rev.
,
37
(
3
), pp.
130
138
.
14.
Collins
,
S. H.
,
Wiggin
,
M. B.
, and
Sawicki
,
G. S.
,
2015
, “
Reducing the Energy Cost of Human Walking Using an Unpowered Exoskeleton
,”
Nature
,
522
(
7555
), pp.
212
215
.
15.
Lee
,
S.
,
Crea
,
S.
,
Malcolm
,
P.
,
Galiana
,
I.
,
Asbeck
,
A.
, and
Walsh
,
C.
,
2016
, “
Controlling Negative and Positive Power at the Ankle With a Soft Exosuit
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, pp.
3509
3515
.
16.
Pardoel
,
S.
, and
Doumit
,
M.
,
2019
, “
Development and Testing of a Passive Ankle Exoskeleton
,”
Biocybern. Biomed. Eng.
,
39
(
3
), pp.
902
913
.
17.
Chang
,
Y.
,
Wang
,
W.
, and
Fu
,
C.
,
2020
, “
A Lower Limb Exoskeleton Recycling Energy From Knee and Ankle Joints to Assist Push-Off
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051011
.
18.
Cai
,
M.
,
Liao
,
W.-H.
, and
Cao
,
J.
,
2019
, “
A Smart Harvester for Capturing Energy From Human Ankle Dorsiflexion With Reduced User Effort
,”
Smart Mater. Struct.
,
28
(
1
), p.
015026
.
19.
Etenzi
,
E.
,
Borzuola
,
R.
, and
Grabowski
,
A. M.
,
2020
, “
Passive-Elastic Knee-Ankle Exoskeleton Reduces the Metabolic Cost of Walking
,”
J. NeuroEng. Rehabil.
,
17
(
1
), pp.
1
15
.
20.
Winter
,
D. A.
,
Patla
,
A. E.
,
Frank
,
J. S.
, and
Walt
,
S. E.
,
1990
, “
Biomechanical Walking Pattern Changes in the Fit and Healthy Elderly
,”
Phys. Ther.
,
70
(
6
), pp.
340
347
.
21.
Tao
,
W.
,
Liu
,
T.
,
Zheng
,
R.
, and
Feng
,
H.
,
2012
, “
Gait Analysis Using Wearable Sensors
,”
Sensors
,
12
(
2
), pp.
2255
2283
.
22.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2012
, “
Linking the Mechanics and Energetics of Hopping With Elastic Ankle Exoskeletons
,”
J. Appl. Physiol.
,
113
(
12
), pp.
1862
1872
.
23.
Sawicki
,
G. S.
,
Beck
,
O. N.
,
Kang
,
I.
, and
Young
,
A. J.
,
2020
, “
The Exoskeleton Expansion: Improving Walking and Running Economy
,”
J. NeuroEng. Rehabil.
,
17
(
1
), pp.
1
9
.
24.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking Two-Legged Machines
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.
25.
Witte
,
K. A.
,
Zhang
,
J. J.
,
Jackson
,
R. W.
, and
Collins
,
S. H.
,
2015
, “
Design of Two Lightweight, High-Bandwidth Torque-Controlled Ankle Exoskeletons
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1223
1228
.
26.
Browning
,
R. C.
,
Modica
,
J. R.
,
Kram
,
R.
, and
Goswami
,
A.
,
2007
, “
The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking
,”
Med. Sci. Sports Exercise
,
39
(
3
), pp.
515
525
.
27.
Teunissen
,
L. P. J.
,
Grabowski
,
A.
, and
Kram
,
R.
,
2007
, “
Effects of Independently Altering Body Weight and Body Mass on the Metabolic Cost of Running
,”
J. Exp. Biol.
,
210
(
24
), pp.
4418
4427
.
28.
Shamaei
,
K.
,
Cenciarini
,
M.
, and
Dollar
,
A. M.
,
2011
, “
On the Mechanics of the Ankle in the Stance Phase of the Gait
,”
Proceedings of the IEEE International Conference on Engineering in Medicine and Biology Society
,
Boston, MA
,
Aug. 30–Sept. 3
,pp.
8135
8140
.
29.
Gottschall
,
J. S.
, and
Kram
,
R.
,
2005
, “
Energy Cost and Muscular Activity Required for Leg Swing During Walking
,”
J. Appl. Physiol.
,
99
(
1
), pp.
23
30
.
30.
Kawakami
,
Y.
,
Kanehisa
,
H.
, and
Fukunaga
,
T.
,
2008
, “
The Relationship Between Passive Ankle Plantar Flexion Joint Torque and Gastrocnemius Muscle and Achilles Tendon Stiffness: Implications for Flexibility
,”
J. Orthop. Sports Phys. Ther.
,
38
(
5
), pp.
269
276
.
31.
Schache
,
A. G.
,
Brown
,
N. A.
, and
Pandy
,
M. G.
,
2015
, “
Modulation of Work and Power by the Human Lower-Limb Joints With Increasing Steady-State Locomotion Speed
,”
J. Exp. Biol.
,
218
(
15
), pp.
2472
2481
.
32.
Grabowski
,
A. M.
, and
Herr
,
H. M.
,
2009
, “
Leg Exoskeleton Reduces the Metabolic Cost of Human Hopping
,”
J. Appl. Physiol.
,
107
(
3
), pp.
670
678
.
33.
Jackson
,
R. W.
, and
Collins
,
S. H.
,
2015
, “
An Experimental Comparison of the Relative Benefits of Work and Torque Assistance in Ankle Exoskeletons
,”
J. Appl. Physiol.
,
119
(
5
), pp.
541
557
.
34.
Lee
,
S. J.
, and
Hidler
,
J.
,
2008
, “
Biomechanics of Overground Vs. Treadmill Walking in Healthy Individuals
,”
J. Appl. Physiol.
,
104
(
3
), pp.
747
755
.
35.
Ishikawa
,
M.
,
Komi
,
P. V.
,
Grey
,
M. J.
,
Lepola
,
V.
, and
Bruggemann
,
G. P.
,
2005
, “
Muscle-Tendon Interaction and Elastic Energy Usage in Human Walking
,”
J. Appl. Physiol.
,
99
(
2
), pp.
603
608
.
36.
Panizzolo
,
F. A.
,
Galiana
,
I.
,
Asbeck
,
A. T.
,
Siviy
,
C.
,
Schmidt
,
K.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2016
, “
A Biologically-Inspired Multi-joint Soft Exosuit That Can Reduce the Energy Cost of Loaded Walking
,”
J. NeuroEng. Rehabil.
,
13
(
1
), pp.
1
14
.
37.
Zarrugh
,
M. Y.
,
Todd
,
F. N.
, and
Ralston
,
H. J.
,
1974
, “
Optimization of Energy Expenditure During Level Walking
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
33
(
4
), pp.
293
306
.
38.
Van Dijk
,
W.
, and
Van der Kooij
,
H.
,
2014
, “
XPED2: A Passive Exoskeleton With Artificial Tendons
,”
IEEE Rob. Autom. Mag.
,
21
(
4
), pp.
56
61
.
39.
Li
,
Q.
,
Naing
,
V.
, and
Donelan
,
J. M.
,
2009
, “
Development of a Biomechanical Energy Harvester
,”
J. NeuroEng. Rehabil.
,
6
(
1
), pp.
1
12
.
40.
Elftman
,
H.
,
1966
, “
Biomechanics of Muscle With Particular Application to Studies of Gait
,”
J. Bone Joint Surg.
,
48
(
2
), pp.
363
377
.
41.
Kuo
,
A. D.
,
2001
, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
264
269
.
You do not currently have access to this content.