Oscillatory behavior is important for tasks, such as walking and running. We are developing methods for wearable robotics to add energy to enhance or vary the oscillatory behavior based on the system's phase angle. We define a nonlinear oscillator using a forcing function based on the sine and cosine of the system's phase angle that can modulate the amplitude and frequency of oscillation. This method is based on the state of the system and does not use off-line trajectory planning. The behavior of a limit cycle is shown using the Poincaré–Bendixson criterion. Linear and rotational models are simulated using our phase controller. The method is implemented and tested to control a pendulum.
Issue Section:
Technical Brief
References
1.
Revzen
, S.
, and Guckenheimer
, J. M.
, 2008
, “Estimating the Phase of Synchronized Oscillators
,” Phys. Rev.
, 78
(5
), p. 051907
.2.
Tilton
, A. K.
, Hsiao-Wecksler
, E. T.
, and Mehta
, P. G.
, 2012
, “Filtering With Rhythms: Application to Estimation of Gait Cycle
,” American Control Conference
(ACC
), Montréal, Canada, June 27–29, pp. 3433–3438.3.
Kerestes
, J.
, Sugar
, T. G.
, Flaven
, T.
, and Holgate
, M.
, 2014
, “A Method to Add Energy to Running Gait: PogoSuit
,” ASME
Paper No. DETC2014-34406.4.
Kerestes
, J.
, Sugar
, T. G.
, and Holgate
, M.
, 2014
, “Adding and Subtracting Energy to Body Motion: Phase Oscillator
,” ASME
Paper No. DETC2014-34405.5.
Sugar
, T. G.
, Bates
, A.
, Holgate
, M.
, Kerestes
, J.
, Mignolet
, M.
, New
, P.
, Ramachandran
, R. K.
, Redkar
, S.
, and Wheeler
, C.
, 2015
, “Limit Cycles to Enhance Human Performance Based on Phase Oscillators
,” ASME J. Mech. Rob.
, 7
(1
), p. 011001
.6.
New
, P.
, Wheeler
, C.
, and Sugar
, T. G.
, 2014
, “Robotic Hopper Using Phase Oscillator Controller
,” ASME
Paper No. DETC2014-34188.7.
Ronsse
, R.
, Vitiello
, N.
, Lenzi
, T.
, van den Kieboom
, J.
, Chiara Carrozza
, M.
, and Jan Ijspeert
, A.
, 2010
, “Adaptive Oscillators With Human-in-the-Loop: Proof of Concept for Assistance and Rehabilitation
,” 3rd IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob
), Tokyo, Japan, Sept. 26–29, pp. 668–674.8.
Rinderknecht
, M. D.
, Delaloye
, F. A.
, Crespi
, A.
, Ronsse
, R.
, and Jan Ijspeert
, A.
, 2011
, “Assistance Using Adaptive Oscillators: Robustness to Errors in the Identification of the Limb Parameters
,” IEEE International Conference on Rehabilitation Robotics (ICORR
), Zurich, Switzerland, June 29–July 1.9.
Righetti
, L.
, Buchli
, J.
, and Jan Ijspeert
, A.
, 2009
, “Adaptive Frequency Oscillators and Applications
,” Open Cybern. Syst. J.
, 3
(1
), pp. 64
–69
.10.
Righetti
, L.
, Buchli
, J.
, and Ijspeert
, A. J.
, 2006
, “Dynamic Hebbian Learning in Adaptive Frequency Oscillators
,” Physica D.: Nonlinear Phenomena
, 216
(2
), pp. 269
–281
.11.
Seo
, K.
, Hyung
, S. Y.
, Choi
, B. K.
, Lee
, Y.
, and Shim
, Y.
, 2015
, “A New Adaptive Frequency Oscillator for Gait Assistance
,” IEEE International Conference on Robotics and Automation
(ICRA
), Seattle, WA, May 26–30, pp. 5565–5571.12.
Rouse
, E. J.
, Gregg
, R. D.
, Hargrove
, L. J.
, and Sensinger
, J. W.
, 2013
, “The Difference Between Stiffness and Quasi-Stiffness in the Context of Biomechanical Modeling
,” IEEE Trans. Biomed. Eng.
, 60
(2
), pp. 562
–568
.13.
Asano
, F.
, Yamakita
, M.
, Kamamichi
, N.
, and Luo
, Z. W.
, 2004
, “A Novel Gait Generation for Biped Walking Robots Based on Mechanical Energy Constraint
,” IEEE Trans. Rob. Autom.
, 20
(3
), pp. 565
–573
.14.
Gregg
, R. D.
, and Sensinger
, J. W.
, 2014
, “Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg
,” IEEE Trans. Control Syst. Technol.
, 22
(1
), pp. 246
–254
.15.
Gregg
, R. D.
, Lenzi
, T.
, Fey
, N. P.
, Hargrove
, L. J.
, and Sensinger
, J. W.
, 2013
, “Experimental Effective Shape Control of a Powered Transfemoral Prosthesis
,” IEEE International Conference on Rehabilitation Robotics
(ICORR
), Seattle, WA, June 24–26, pp. 1–7.16.
Linkens
, D. A.
, 1977
, “The Stability of Entrainment Conditions for RLC Coupled Van der Pol Oscillators Used as a Model for Intestinal Electrical Rhythms
,” Bull. Math. Biol.
, 39
(3
), pp. 359
–372
.17.
Matsuoka
, K.
, 1987
, “Mechanisms of Frequency and Pattern Control in the Neural Rhythm Generators
,” Biol. Cybern.
, 56
(5–6
), pp. 345
–353
.18.
Kuramoto
, Y.
, 1975
, Self-Entrainment of a Population of Coupled Non-Linear Oscillators
(Lecture Notes in Physics), Springer
, Berlin, pp. 420
–422
.19.
De la Fuente Valadez
, J. O.
, 2016
, “Nonlinear Phase Based Control to Generate and Assist Oscillatory Motion With Wearable Robotics
,” Ph.D. dissertation
, Arizona State University, Mesa, AZ.20.
Khalil
, H. K.
, 2002
, Nonlinear Systems
, 3rd ed., Prentice Hall
, Upper Saddle River, NJ
.Copyright © 2017 by ASME
You do not currently have access to this content.